In general, the quantity of heat energy, Q, required to raise a mass m kg of a substance with a specific heat capacity of <span>c </span>J/(kg °C), from temperature t1 °C to t2 °C is given by:
<span>Q </span>= <span>mc(t</span><span>2 </span><span>– t</span>1<span>) joules</span>
<span>So:</span>
(t2-t1) =Q / mc
<span>As we know:
Q = 500 J </span>
<span>m = 0.4 kg</span>
<span>c = 4180 J/Kg </span>°c
<span>We can take t1 to be 0</span>°c
t2 - 0 = 500 / ( 0.4 * 4180 )
t2 - 0 = 0.30°c
Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin
Answer:
They can be seen from a distance of 4.372 kilometers.
Explanation:
Using the Reyligh creterion for diffraction through a circular aperture we have
where symbol's have their usual meaning
thus applying values we get


No, you are at a constant rate which means that you are always at 40mph
Answer: 0.56 m/s
Explanation:
Hi, to answer this question we have to apply the formula of the conservation of momentum.
m1 v1 = m2 v2 (because the system is stationary at the beginning)
Where:
m1 = mass of the astronaut
v1= velocity of the astronaut
m2= mass of the satellite
v2= velocity of the satellite
Replacing with the values given and solving:
86 kg (2.35m/s) = 360 kg v2
202.1 kgm/s=360kg v2
202.1kgm/s /360kg =v2
v2 = 0.56 m/s
Feel free to ask for more if needed or if you did not understand something.