x = number of 1-cent stamps
y = number of 8-cent stamps
z = number of 12-cent stamps
We have 31 stamps all together, so x+y+z = 31.
"I have 4 more 1-cent stamps than 8-cent stamps" means we have the equation x = y+8. Whatever y is, add 8 to it to get x. Solve for y to get y = x-8.
You also have "twice as many one cent stamps as 12 cent stamps", so x = 2z. Solving for z gets you z = 0.5x
-------------
x+y+z = 31
x+x-8+z = 31 ... y replaced with x-8
x+x-8+0.5x = 31 ... plug in z = 0.5x
2.5x-8 = 31
2.5x = 31+8
2.5x = 39
x = 39/2.5
x = 15.6
Your teacher made a typo somewhere because we should get a positive whole number result for x (since x is a count of how many 1-cent stamps we have).
Answer:
I've never been to waffle house
X - the first numberx + 13 - the second number
The equation:
x + x + 13 = 152x + 13 = 15 |-132x = 2 |:2x = 1
x + 13 = 1 + 13 = 14
Answer: 1 and 14
Answer:
-10.2n - 1
Step-by-step explanation:
We have two expressions in variable n and we have to add the two expressions.
An important thing to note is that only like terms can be added. i.e. the term with "n" can only be added or subtracted to the term with "n". Similarly a constant can only be added or subtracted to a constant.
Thus, the two given expressions add up to -10.2n - 1
"Better to have loved a short man than never to have loved a tall".