Answer:
A
Explanation:
Momentum conservation will cause 0.08kg to move to the west (opposite of 0.02 kg).
and because both are at the same height above the ground, they will take the same time to reach the ground.
The speed of 0.08kg will be less than 0.02 kg, let v be the speed of 0..02kg, then speed of 0.08kg V is
0.02v - (0.08)V = 0
V = 0.02 v/ 0.08 = v/4
The speed of 0.08 kg = v/4
The speed of 0.08 kg is less than 0.02kg.
So 0.02kg strikes the ground farther from the launch point than does the 0.08 kg
Increasing ambient temperature decreases efficiency and load carrying capacity of electric transmission lines.
Increased molecular movement in the conductors as temperature rises, increases resistance to current flow.
The answer is c, because ball is falling so its gravitationl potential energy decreases, but it kinetic energy increases. Energy is always conserved.
Answer:
Vi = 24.14 m/s
Explanation:
If we apply Law of Conservation of Energy or Work-Energy Principle here, we get: (neglecting friction)
Loss in K.E of the Rock = Gain in P.E of the Rock
(1/2)(m)(Vi² - Vf²) = mgh
Vi² - Vf² = 2gh
Vi² = Vf² + 2gh
Vi = √(Vf² + 2gh)
where,
Vi = Rock's Speed as it left the ground = ?
Vf = Final Speed = 17 m/s
g = 9.8 m/s²
h = height of rock = 15 m
Therefore,
Vi = √[(17 m/s)² + 2(9.8 m/s²)(15 m)]
Vi = √583 m²/s²
<u>Vi = 24.14 m/s</u>