The answer is B.) Freezing of water
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
Depression in freezing point (Δ

) =

×m×i,
where,

= cryoscopic constant =

,
m= molality of solution = 0.0085 m
i = van't Hoff factor = 2 (For

)
Thus, (Δ

) = 1.86 X 0.0085 X 2 =

Now, (Δ

) =

- T
Here, T = freezing point of solution

= freezing point of solvent =

Thus, T =

- (Δ

) = -
Answer:
C.) 35
Explanation:
The mass is made up of the total protons and neutrons in an atom. Protons and neutrons both have a mass of 1 amu. Electrons are not included in this measurement because they have an insignificant mass (practically 0).
(17 protons x 1 amu) + (18 neutrons x 1 amu) = 35 amu
Therefore, if an atom contains 17 protons and 18 neutrons, the mass should be 35 amu.