1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
2 years ago
8

Hunters velocity was 4.5 m/s. At the end of his race, his velocity was the same. Which best describes his Movement?

Physics
1 answer:
hjlf2 years ago
8 0
He has no acceleration because his velocity remains constant
You might be interested in
How long will the ball be in the air if the cliff is 120 m tall and the ball falls to the base of the cliff?
Readme [11.4K]

Answer:

Explanation:

4.95s≈5s

Use equation :

h=G*t²/2

h=120m ----hight of cliff

G=9.81m/s²

t=?

-----------------------

h=G*t²/2

120m=9.81m/s²*t²/2

240m=9.81m/s²*t²

t²=240m/ 9.81m/s²

t²=24.46s

t=√24.46s²

t=4.95 s≈5s

3 0
3 years ago
A crate with a mass of 110 kg glides through a space station with a speed of 4.0 m/s. An astronaut speeds it up by pushing on it
Darina [25.2K]

Answer:

The final speed of the crate after the astronaut push to slow it down is 4.50 m/s

Explanation:

<u>Given:  </u>

The crate has mass m = 110 kg and an initial speed vi = 4 m/s.  

<u>Solution  </u>

We are asked to determine the final speed of the crate. We could apply the steps for energy principle update form as next  

Ef=Ei+W                                                 (1)

Where Ef and Ei are the find and initial energies of the crate (system) respectively. While W is the work done by the astronaut (surrounding).  

The system has two kinds of energy, the kinetic energy which associated with its motion and the rest energy where it has zero speed. The summation of both energies called the particle energy. So, equation (1) will be in the form  

(Kf + mc^2) = (KJ+ mc^2)                       (2)  

Where m is the mass of crate, c is the speed of light which equals 3 x 10^8 m/s and the term mc^2 represents the energy at rest and the term K is the kinetic energy.  

In this case, the rest energy doesn't change so we can cancel the rest energy in both sides and substitute with the approximate expression of the kinetic energy of the crate at low speeds where K = 1/2 mv^2 and equation (2) will be in the form

(1/2mvf^2+mc^2)=(1/2mvi^2 +mc^2)+W

1/2mvf^2=1/2mvi^2+W                              (3)

Now we want to calculate the work done on the crate to complete our calculations. Work is the amount of energy transfer between a source of an applied force and the object that experiences this force and equals the force times the displacement of the object. Therefore, the total work done will be given by  

W = FΔr                                                      (4)  

Where F is the force applied by the astronaut and equals 190 N and Δr is the displacement of the crate and equals 6 m. Now we can plug our values for F and Δr to get the work done by the astronaut  

W = F Δr= (190N)(6 m) = 1140 J  

Now we can plug our values for vi, m and W into equation (3) to get the final speed of the crate  

1/2mvf^2=1/2mvi^2+W

vf=5.82 m/s

This is the final speed of the first push when the astronaut applies a positive work done. Then, in the second push, he applies a negative work done on the crate to slow down its speed. Hence, in this case, we could consider the initial speed of the second process to be the final speed of the first process. So,  

vi' = vf

In this case, we will apply equation (3) for the second process to be in the

1/2mvf^2=1/2mvi'^2+W'                                 (3*)

The force in the second process is F = 170 N and the displacement is 4 m. The force and the displacement are in the opposite direction, hence the work done is negative and will be calculated by  

W'= —F Δr = —(170N)(4 m)= —680J

Now we can plug our values for vi' , m and W' into equation (3*) to get the final speed of the crate  

1/2mvf'^2=1/2mvi'^2+W'

  vf'=4.50 m/s

The final speed of the crate after the astronaut push to slow it down is 4.50 m/s

7 0
3 years ago
when a cup of hot chocolate cools from 90c to 80c which of the following is happening to the molecules of the liquid
Murljashka [212]

Answer:

I think that the liquids molecules are slowing down. Hope this helps!

Explanation:

Please vote me Brainliest

7 0
3 years ago
Examine the spectra of the four unknown substances shown below. What can you conclude?
NARA [144]
Line spectra are obtained when individual elements are heated using a high-voltage electrical discharge. This heating causes excitation of the element and a subsequent emission of distinct lines of colored light are obtained. Each element has its own unique emission line spectrum; therefore, if any of the tested substances were the same, their spectra would match. However, this is not the case so none of the substances are the same.
7 0
3 years ago
Read 2 more answers
The force F required to compress a spring a distance x is given by F 2 F0 5 kx where k is the spring constant and F0 is the prel
IrinaVladis [17]

Answer:

a)W=8.333lbf.ft

b)W=0.0107 Btu.

Explanation:

<u>Complete question</u>

The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.

Solution

Preload = F₀=0 lbf

Spring constant k= 200 lbf/in

Initial length of spring x₁=0

Final length of spring x₂= 1 in

At any point, the force during deflection of a spring is given by;

F= F₀× kx  where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

W=\int\limits^2_1 {} \, Fds \\\\\\W=\int\limits^2_1( {F_0+kx} \,) dx \\\\\\W=\int\limits^a_b {kx} \, dx ; F_0=0\\\\\\W=k\int\limits^2_1 {x} \, dx \\\\\\W=k*\frac{1}{2} (x_2^{2}-x_1^{2}  )\\\\\\W=200*\frac{1}{2} (1^2-0)\\\\\\W=100.lbf.in\\\\

Change to lbf.ft by dividing the value by 12 because 1ft=12 in

100/12 = 8.333 lbf.ft

work required to compress the spring, W=8.333lbf.ft

The work required to compress the spring in Btu will be;

1 Btu= 778 lbf.ft

?= 8.333 lbf.ft----------------cross multiply

(8.333*1)/ 778 =0.0107 Btu.

6 0
3 years ago
Other questions:
  • there are 1.6 km in a mile. the distance between two cities is 248 miles. How many kilometers apart are the two cities?
    6·1 answer
  • a light wave travels at 3.0 x 10^8 m/s. if the wavelength of a red wave is 700 x 10^-9m, what is the frequency?
    8·1 answer
  • APEX What is one advantage of using primary sources when doing research on an
    15·1 answer
  • A cello string 0.75 m long has a 220 hz fundamental frequency. find the wave speed along the vibrating string. answer in units o
    5·1 answer
  • The human ear canal is about 2.8 cm long. If it is regarded as a tube that is open at one end and closed at the eardrum, what is
    5·1 answer
  • Astronomy***
    9·1 answer
  • What is the mass of an object that is accelerated at 25 m/s2 by a force of 135 N?
    9·1 answer
  • Kayla draws the image shown as part of her physical science homework.
    10·1 answer
  • 37. A baseball is pitched at a speed of 40 m/s. How long does it take the ball to travel 27
    14·2 answers
  • Please answer these, I’m willing to give plenty of points.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!