Answer:
The answer of the part (a) is v2 = 7.09 m/s
and the answer of the part (b) is vA1 = 5.25 m/s
Explanation:
Explanation of the both parts of answer is in the following attachments
Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s
Explanation:
The two postulates of special theory of relativity
Postulate 1: The law of physics are invariant under any of inertial frame of reference.
Postulate 2: The velocity of light is remains same in each ans every frame of reference and independent of relativity.
They are differ from classical mechanics that in classical mechanics there is no change in mass and length in relative velocity but in relativistic mechanics it changes.
These two postulates implements in phenomenon like time dilation , length contraction etc.
Thanks
A) be too hot to support life
D) Submarine is your answer. Have a great rest of your day!