The Himalayan Mountains formed at a convergence plate boundary between the Eurasian plate and the Indian plate.
Answer:
a = 1600 m / s²
Explanation:
For this exercise we use the kinematics relations,
v² = v₀² + 2 a x
where v₀ is the initial velocity of the bullet, which as part of rest is zero, for the distance (x) we can assume that the gases accelerate along the entire trajectory of the cannon x = 2m
a =
let's calculate
a =
a = 1600 m / s²
Answer:
To decide where the balls land, we need to determine how long the balls are in the air. Both balls will take 2 seconds to hit the ground.
Explanation:
1) Time played forward : gravity & drag forces are in opposite directions so it takes a longer time to reach the ground. 2) Time played backward : gravity & drag forces are in the same direction so it takes a shorter time to reach the ground.
Answer:
35.3 N
Explanation:
U = 0, V = 0.61 m/s, s = 0.39 m
Let a be the acceleration.
Use third equation of motion
V^2 = u^2 + 2 as
0.61 × 0.61 = 0 + 2 × a × 0.39
a = 0.477 m/s^2
Force = mass × acceleration
F = 74 × 0.477 = 35.3 N
If the wavelength<span> is given, the energy can be determined by first using the wave equation (c = λ × ν) to </span>find<span> the frequency, then using Planck's equation to </span>calculate<span> energy. Use the equations above to answer the following questions. 1. Ultraviolet radiation has a frequency of 6.8 × 1015 1/s.</span>