Answer:
a) 3.39 × 10²³ atoms
b) 6.04 × 10⁻²¹ J
c) 1349.35 m/s
Explanation:
Given:
Diameter of the balloon, d = 29.6 cm = 0.296 m
Temperature, T = 19.0° C = 19 + 273 = 292 K
Pressure, P = 1.00 atm = 1.013 × 10⁵ Pa
Volume of the balloon = 
or
Volume of the balloon = 
or
Volume of the balloon, V = 0.0135 m³
Now,
From the relation,
PV = nRT
where,
n is the number of moles
R is the ideal gas constant = 8.314 kg⋅m²/s²⋅K⋅mol
on substituting the respective values, we get
1.013 × 10⁵ × 0.0135 = n × 8.314 × 292
or
n = 0.563
1 mol = 6.022 × 10²³ atoms
Thus,
0.563 moles will have = 0.563 × 6.022 × 10²³ atoms = 3.39 × 10²³ atoms
b) Average kinetic energy = 
where,
Boltzmann constant,
Average kinetic energy = 
or
Average kinetic energy = 6.04 × 10⁻²¹ J
c) rms speed = 
where, m is the molar mass of the Helium = 0.004 Kg
or
rms speed = 
or
rms speed = 1349.35 m/s
I think it is c density and temperature
The average kinetic energy of a gas particle is directly proportional to the temperature. An increase in temperature increases the speed in which the gas molecules move. All gases at a given temperature have the same average kinetic energy. Lighter gas molecules move faster than heavier molecules.
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>