A sphere has reflection symmetry across any plane through its center.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
W done by Normal = 0. (make the incline flat, Normal force goes directly up: no work done)
<span>W done by gravity = w*displacement = (11kg*9.8) * 7.5sin(35) = -463J </span>
<span>W done by friction is the opposite of the work done by weight because the object is not moving. Therefore W done by friction = 463J</span>
Answer: Sirius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Another bright star, Regulus, has a parallax of 0.042 arcseconds. Then, the distance in parsecs will be,23.46.
Explanation: To find the answer, we have to know more about the relation between the distance in parsecs and the parallax.
<h3>What is the relation between the distance in parsecs and the parallax?</h3>
- Let's consider a star in the sky, is d parsec distance from the earth, and which has some parallax of P amount.
- Then, the equation connecting parallax and the distance in parsec can be written as,


<h3>How to solve the problem?</h3>

- Thus, we can find the distance in parsecs as,

Thus, we can conclude that, the distance in parsecs will be, 23.46.
Learn more about the relation connecting distance in parsecs and the parallax here: brainly.com/question/28044776
#SPJ4