Answer:
DONT PRESS THAT THAT IS HACK AND VIRUS
Explanation:
Please add you assignment.
Just use the Heisenberg Uncertainty principle:
<span>ΔpΔx = h/2*pi </span>
<span>Δp = the uncertainty in momentum </span>
<span>Δx = the uncertainty in position </span>
<span>h = 6.626e-34 J s (plank's constant) </span>
<span>Hint: </span>
<span>to calculate Δp use the fact that the uncertainty in the momentum is 1% (0.01) so that </span>
<span>Δp = mv*(0.01) </span>
<span>m = mass of electron </span>
<span>v = velocity of electron </span>
<span>Solve for Δx </span>
<span>Δx = h/(2*pi*Δp) </span>
<span>And that is the uncertainty in position. </span>
Answer:
0.252 milimoles
Explanation:
To convert mass of a substance to moles it is necessary to use the molar mass of the substance.
The formula of morphine is C₁₇H₁₉NO₃, thus, its molar mass is:
C: 17*12.01g/mol = 204.17g/mol
H: 19*1.01g/mol = 19.19g/mol
N: 1*14g/mol = 14g/mol
O: 3*16g/mol = 48g/mol.
204.17 + 19.19 + 14 + 16 = <em>285.36g/mol</em>
Thus, moles of 71.891 mg = 0.071891g:
0.071891g × (1mol / 285.36g) = 2.5193x10⁻⁴ moles
As 1 mole = 1000 milimoles:
2.5193x10⁻⁴ moles = <em>0.252 milimoles</em>
35g Mg x 1mol / 24g = 840 mol