Answer: smallest will be 000,.111 84.
Explanation:
The rate at which velocity changes is called acceleration
Answer:
True
Explanation:
When trying to solve a frame problem in Engineering or Physics, it will typically be necessary to draw more than one body diagram.
When we have several parts of the frame or a set of frames, we have the anchor point, as well as the intersections of frames. Besides that, usually, there is a particle or rigid body together with the frame system. In this sense, usually, it is required to analyze a body diagram for the particle or rigid body suspended, as well as the intersections of the frames. So, usually, it will be required a minimum of two body diagrams.
If the system is more complex, or there are many intersections points, it will be required more than two body diagrams.
Finally, indeed, it will typically be necessary to draw many-body diagrams.
Answer:
a)temperature=69.1C
b)3054Kw
Explanation:
Hello!
To solve this problem follow the steps below, the complete procedure is in the attached image
1. draw a complete outline of the problem
2. to find the temperature at the turbine exit use termodinamic tables to find the saturation temperature at 30kPa
note=Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
3. Using thermodynamic tables find the enthalpy and entropy at the turbine inlet, then find the ideal enthalpy using the entropy of state 1 and the outlet pressure = 30kPa
4. The efficiency of the turbine is defined as the ratio between the real power and the ideal power, with this we find the real enthalpy.
Note: Remember that for a turbine with a single input and output, the power is calculated as the product of the mass flow and the difference in enthalpies.
5. Find the real power of the turbine