Answer:
The pressure difference across hatch of the submarine is 3217.68 kpa.
Explanation:
Gauge pressure is the pressure above the atmospheric pressure. If we consider gauge pressure for finding pressure differential then no need to consider atmospheric pressure as they will cancel out. According to hydrostatic law, pressure varies in the z direction only.
Given:
Height of the hatch is 320 m
Surface gravity of the sea water is 1.025.
Density of water 1000 kg/m³.
Calculation:
Step1
Density of sea water is calculated as follows:

Here, density of sea water is
, surface gravity is S.G and density of water is
.
Substitute all the values in the above equation as follows:


kg/m³.
Step2
Difference in pressure is calculated as follows:


pa.
Or

kpa.
Thus, the pressure difference across hatch of the submarine is 3217.68 kpa.
Answer:
DIAMETER = 9.797 m
POWER = 
Explanation:
Given data:
circular windmill diamter D1 = 8m
v1 = 12 m/s
wind speed = 8 m/s
we know that specific volume is given as

where v is specific volume of air
considering air pressure is 100 kPa and temperature 20 degree celcius

v = 0.8409 m^3/ kg
from continuity equation





mass flow rate is given as


the power produced ![\dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]](https://tex.z-dn.net/?f=%5Cdot%20W%20%3D%20%5Cdot%20m%20%5Cfrac%7B%20V_1%5E2%20-%20V_2%5E2%7D%7B2%7D%20%3D%20717.3009%20%5B%5Cfrac%7B12%5E2%20-%208%5E2%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2Fs%5E2%7D%5D)

Answer:
The radius 4 is maximum in convex surface
Answer:
(a) The magnitude of force is 116.6 lb, as exerted by the rod CD
(b) The reaction at A is (-72.7j-38.1k) lb and at B it is (37.5j) lb.
Explanation:
Step by step working is shown in the images attached herewith.
For this given system, the coordinates are the following:
A(0, 0, 0)
B(26, 0, 0)
And the value of angle alpha is 20.95°
Hope that answers the question, have a great day!
They ran different shapes and materials through a wind tunnel to see which shape and material would decrease energy output so that it takes in equal COthan it puts out.