Product are favored at ...
example 2A + 3B = 5C + D if reaction is exothermic ....delta H = NEGATIVE)
A decrease in temperature favors the forward reaction (more product formed)
as heat is considered as a product
For the exam I have given: A decrease in pressure (volume increases as pressure decreases) .... there are more number of moles on the product side (6 in all) .....so according to LCP decreasing pressure will revert back to increase pressure and to do that equilibrium position shifts to the right (product)
decreasing concentration of product will cause a disturbance in equilibrium position....and reaction will restore its equilibrium by shifting to the right
(I believe its like this)
Answer: It becomes the uncombined element in the product.
Explanation:
The reaction between Zn and HCl is a single displacement reaction according to equation below
Zn + 2HCl —> ZnCl2 + H2
Zn displaces H2 from acid and in the product, hydrogen became the uncombined element.
Answer:
The solutions are ordered by this way (from lowest to highest freezing point): K₃PO₄ < CaCl₂ < NaI < glucose
Option d, b, a and c
Explanation:
Colligative property: Freezing point depression
The formula is: ΔT = Kf . m . i
ΔT = Freezing T° of pure solvent - Freezing T° of solution
We need to determine the i, which is the numbers of ions dissolved. It is also called the Van't Hoff factor.
Option d, which is glucose is non electrolyte so the i = 1
a. NaI → Na⁺ + I⁻ i =2
b. CaCl₂ → Ca²⁺ + 2Cl⁻ i =3
c. K₃PO₄ → 3K⁺ + PO₄⁻³ i=4
Potassium phosphate will have the lowest freezing point, then we have the calcium chloride, the sodium iodide and at the end, glucose.
Answer:
1.5 × 10² mL
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 1.9 atm
- Initial volume of the gas (V₁): 80 mL
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final volume of the gas (V₂): ?
Step 2: Calculate the final volume of the gas
For an ideal gas, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 1.9 atm × 80 mL/1.0 atm
V₂ = 1.5 × 10² mL
Since the pressure decreased, the volume of the gas increased.
repartExiplanation:cionde atomos