Answer:
The correct answer is D
Explanation:
Many substances hold their molecules together in the liquid or solid bosom. This is due, in addition to the pressure and temperature conditions, by the forces of Van der Waals. These are still produced in nonpolar molecules by the movement of electrons through the molecules; in extremely short periods of time, their electrons "charge" towards one end of the molecule, producing small dipoles and keeping the molecules very close to each other.
5.05 + 5 + 5.1 = 15.15cm Then you just divide it by the amount of measurements you had like this:15.15 ÷ 3 = 5.04999971cm Then you can just round it to the 3rd figure: 5.05cm < And that's the mean/average length of the bar. :) (Or the one above if you want all of the decimals too)
AgNO₃+NaCl⇒AgCl+NaNO₃
<h3>Further explanation</h3>
Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
Reaction
AB + CD⇒AD + CB
So for the option :
1. synthesis/combination reaction
2. decomposition reaction
3. double replacement reaction
4. single replacement reaction
The pressure of gas will increase because gaseous state is the final state and even if the heat added is evaporating some more gas is still added. It also depends on the temperature of heat added, if the temperature doesn't change the it's most likely for the pressure to be stable...
Hope it helps
increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
Explanation:
The concentration of NO at equilibrium will increase when the reaction takes place at a higher temperature because increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
The reaction is an endothermic reaction.
N₂ + O₂ + heat ⇄ 2NO
According to Le Chatelier's principle, "if any of the conditions of a system in equilibrium is changed the system will adjust itself in order to annul the effect of the change".
- In an endothermic reaction, heat is usually absorbed.
- We see that in the backward reaction, heat is absorbed.
- If the temperature of this reaction is increased, the backward reaction is favored more.
- Since the reactants are combining better, more products NO results.
learn more:
Thermodynamics of reactions brainly.com/question/10567109
#learnwithBrainly