Answer:
Explanation:
Mean temperature is given by

Tmean = (Ti + T∞)/2

Tmean = 107.5⁰C
Tmean = 107.5 + 273 = 380.5K
Properties of air at mean temperature
v = 24.2689 × 10⁻⁶m²/s
α = 35.024 × 10⁻⁶m²/s
= 221.6 × 10⁻⁷N.s/m²
= 0.0323 W/m.K
Cp = 1012 J/kg.K
Pr = v/α = 24.2689 × 10⁻⁶/35.024 × 10⁻⁶
= 0.693
Reynold's number, Re
Pv = 4m/πD²
where Re = (Pv * D)/
Substituting for Pv
Re = 4m/(πD
)
= (4 x 0.003)/( π × 6 ×10⁻³ × 221.6 × 10⁻⁷)
= 28728.3
Since Re > 2000, the flow is turbulent
For turbulent flows, Use
Dittus - Doeltr correlation with n = 0.03
Nu = 0.023Re⁰⁸Pr⁰³ = (h₁D)/k
(h₁ × 0.006)/0.0323 = 0.023(28728.3)⁰⁸(0.693)⁰³
(h₁ × 0.006)/0.0323 = 75.962
h₁ = (75.962 × 0.0323)/0.006
h₁ = 408.93 W/m².K
Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.
Answer:
a. ε₁=-0.000317
ε₂=0.000017
θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain =3.335 *10^-4
Associated average normal strain ε(avg) =150 *10^-6
θ = 31.71 or -58.29
Explanation:

ε₁=-0.000317
ε₂=0.000017
To determine the orientation of ε₁ and ε₂

θ= -13.28° and 76.72°
To determine the direction of ε₁ and ε₂

=-0.000284 -0.0000335 = -0.000317 =ε₁
Therefore θ₁= -13.28° and θ₂=76.72°
b. maximum in-plane shear strain

=3.335 *10^-4

ε(avg) =150 *10^-6
orientation of γmax

θ = 31.71 or -58.29
To determine the direction of γmax

= 1.67 *10^-4
Answer:
The shear strain is 0.05797 rad.
Explanation:
Shear strain is the ratio of change in dimension along the shearing load direction to the height of the plate under application of shear load. Width of the plate remains same. Length of the plate slides under shear load.
Step1
Given:
Height of the pad is 1.38 in.
Deformation at the top of the pad is 0.08 in.
Calculation:
Step2
Shear strain is calculated as follows:



For small angle of
,
can take as
.

Thus, the shear strain is 0.05797 rad.
Answer:
k = 4.21 * 10⁻³(L/(mol.s))
Explanation:
We know that
k = Ae
------------------- euqation (1)
K= rate constant;
A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;
E = activation energy = 93.1kJ/mol;
R= ideal gas constant = 8.314 J/mol.K;
T= temperature = 332 K;
Put values in equation 1.
k = 4.36*10¹¹(M⁻¹s⁻¹)e![^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}](https://tex.z-dn.net/?f=%5E%7B%5B%28-93.1%2A10%5E3%29%28J%2Fmol%29%5D%2F%5B%288.314%29%28J%2Fmol.K%29%28332K%29%7D)
k = 4.2154 * 10⁻³(M⁻¹s⁻¹)
here M =mol/L
k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)
or
k = 4.21 * 10⁻³((L/mol)s⁻¹)
or
k = 4.21 * 10⁻³(L/(mol.s))