Answer:
401.3 kg/s
Explanation:
The power plant has an efficiency of 36%. This means 64% of the heat form the source (q1) will become waste heat. Of the waste heat, 85% will be taken away by water (qw).
qw = 0.85 * q2
q2 = 0.64 * q1
p = 0.36 * q1
q1 = p /0.36
q2 = 0.64/0.36 * p
qw = 0.85 *0.64/0.36 * p
qw = 0.85 *0.64/0.36 * 600 = 907 MW
In evaporation water becomes vapor absorbing heat without going to the boiling point (similar to how sweating takes heat from the human body)
The latent heat for the vaporization of water is:
SLH = 2.26 MJ/kg
So, to dissipate 907 MW
G = qw * SLH = 907 / 2.26 = 401.3 kg/s
A is the answer for the sentence
Answer:
I think
electromagnets require power to operate
The new dimensions of the titanium alloy pin will be that the width is 0.0775 mm and the length is 4.9225m.
<h3>What is Poisson's ratio?</h3>
The Poisson's ratio is the proportion of a material's change in width per unit width to its change in length per unit length due to strain. In order for a stable, isotropic, linear elastic material to have a positive Young's modulus, shear modulus, and bulk modulus, the Poisson's ratio must be between 1.0 and +0.5. Poisson's ratio values for the majority of materials fall between 0.0 and 0.5.
The formula for the longitudinal strain is:
= Change in length / Initial length
Based on the information, the longitudinal strain will be:
= 105 - 100 / 100
= 0.05
Poisson ratio will be illustrated as the change in the width divided by the longitudinal strain. :
0.31 = ∆w/5 / 0.05
∆w = 0.0775 mm
New side length will be the difference in the changes in the dimensions:
= w - ∆w
= 5 - 0.0775
= 4.9225m
Learn more about Poisson on:
brainly.com/question/7879375
#SPJ1
Answer:
Total elongation will be 0.012 m
Explanation:
We have given diameter of the cylinder = 2.1 mm
Length of wire 
So radius 
Load F = 280 N
Elastic modulus = 207 Gpa
Area of cross section 
We know that elongation in wire is given by
, here F is load, L is length, A is area and E is elastic modulus
So 