Now let’s say you’re on the Moon. If you were to drop a hammer and a feather from the same height, which would hit the ground first?
Trick Question! On the moon both objects would hit the ground at the same time. On Earth, the hammer lands first.
So yeah, the student is right. Galileo gave us this theory long ago.
This resistance current is directly proportional to voltage and inversely proportional to resistance. In other words, as the voltage increases, so does the current. Hope this helps !!
To solve this problem we will apply the concepts related to Newton's second law that relates force as the product between acceleration and mass. From there, we will get the acceleration. Finally, through the cinematic equations of motion we will find the time required by the object.
If the Force (F) is 42N on an object of mass (m) of 83000kg we have that the acceleration would be by Newton's second law.

Replacing,


The total speed change
we have that the value is 0.71m/s
If we know that acceleration is the change of speed in a fraction of time,

We have that,


Therefore the Rocket should be fired around to 1403.16s
the wavelength equation is
speed (of light in this
case)= wavelength (m) x frequency
3x10^8m/s / .07m = f
frequency= 4 285 714 286
hertz
b) Total distance= 4.8 km
(4,800 m)
Speed = 3x10^8 m/s
d=st
t= d/s
t= 4,800 m/3x10^8m/s
<span>t= 1x10^-5 seconds</span>