<h3>
Answer:</h3>
1257.45 L
<h3>
Explanation:</h3>
We are given;
- Initial volume of Helium gas, V1 as 806 L
- Initial temperature of Helium gas,T1 as 20.9°C
- Initial pressure of Helium gas, P1 as 753 mmHg
- Pressure of Helium at the altitude 6.8 km, P2 as 417 mmHg
- Temperature of Helium gas at the altitude 6.8 Km, T2 as -19.1°C
But, K = °C + 273.15
Therefore, T1 = 294.05 K and T2 = 254.05 K
- We are required to calculate the new volume of the balloon at 6.8 km.
- To determine the new volume we are going to use the combined gas law.
- According to the combined gas law,

Thus, rearranging the formula;



Therefore, the volume of the balloon at an altitude of 6.8 km is 1257.45 L
Answer:
Surely with water
Ok, but how?
There are many Hydrogen Bond between H2O moleculs and london bonds. When fishes take water with their gill,they are broke london bonds. And they can take their needs, Oxygen. Only this.
Good luck :D
<span>1. Which of the following does NOT indicate that a chemical change may have taken place?
A. fracture formation
B. gas production
C. precipitate formation
D. energy transfer
it is (a.)</span>