40.1g of nitrogen gas is produced.
The equation given is
2 NH₃ + 3 CuO →3 Cu + N₂ + 3 H₂O
This equation is already balanced.
When 3 moles of CuO are consumed, 1 mole of nitrogen gas is produced.
We get 1 mole of nitrogen from 3 moles of copper oxide.
We need to find the number of moles of nitrogen gas produced when 4.3 moles of copper oxide are consumed.
4.3/3 x 1 = 1.433 mols
- 1.433 mols of nitrogen gas are produced
- The molar mass of nitrogen gas is 14+14 = 28g
- The amount of nitrogen gas produced in grams is 28x1.433 = 40.1g
40.1g of nitrogen gas can be made when 4.3 moles of CuO are consumed.
Learn more about molarity here:
brainly.com/question/24305514
#SPJ10
reactions to break down glucose using oxygen to produce carbon dioxide, water and energy in the form of ATP. ... To balance the oxygen atoms for the reactant side, you need to count 6 atoms from the glucose.
This reaction is most likely to fall under SN2 because the
thing called carbonication does not occur in SN1. The carbon forms a partial
bond with the nucleophile during the intermediate phase and the leaving group.
So for this question the reaction will fall under SN2.
False. The number of neutrons can be more or less than the number of protons.
Answer:
b. CH₂Cl₂ is more volatile than CH₂Br₂ because of the large dispersion forces in CH₂Br₂
Explanation:
CH₂Cl₂ is more volatile than CH₂Br₂ (b.p of CH₂Cl₂ = 39,6 °C; b.p of CH₂Br₂ = 96,95°C). Thus, c. and d. are FALSE
Dipole-dipole interactions in CH₂Cl₂ are greater than the dipole-dipole interactions in CH₂Br₂ because Cl is more electronegative that Br (Cl = 3,16; Br = 2,96). But this mean CH₂Cl₂ is less volatile than CH₂Br₂ but it is false.
There are large dispersion forces in CH₂Br₂ because Br has more electrons and protons than Cl. Large disperson forces mean CH₂Br₂ is less volatile than CH₂Cl₂ and it is true.
I hope it helps!