1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nat2105 [25]
3 years ago
9

10. The energy transfer between two bodies ofdifferent temperature is ............​

Physics
1 answer:
Leno4ka [110]3 years ago
5 0

Explanation:

My answer to the question is Conduction

You might be interested in
What is the potential energy of two charges of +4.6 μC and +1.0 μC that are separated by a distance of 10.0 cm?
Artist 52 [7]

Answer:

U = 0.413 J

Explanation:

the potential energy between two charges q1 and q2 is given by the following formula:

U=k\frac{q_1q_2}{r}    (1)

k: Coulomb's constant = 8.98*10^9 NM^2/C^2

q1: first charge = 4.6 μC = 4.6*10^-6 C

q2: second charge = 1.0 μC*10^-6 C

r: distance between charges = 10.0 cm = 0.10 m

You replace the values of all variables in the equation (1):

U=(8.98*10^9Nm^2/C^2)\frac{(4.6*10^{-6}C)(1.0*10^{-6}C)}{0.10m}=0.413\ J

Hence, the energy between charges is 0.413 J

3 0
3 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
The amount of energy the body uses when at rest is referred to as _____.
Nesterboy [21]

The answer is Basal Metabolic Rate. It is the total amount of energy expressed in calories that an individual needs to keep the body working at rest. Some of those progressions are blood circulation, breathing, cell growth, controlling body temperature, nerve and brain function, and tightening of muscles.

8 0
3 years ago
What does the Nucleolus do?
SCORPION-xisa [38]

Answer:

C

Explanation:

6 0
3 years ago
Read 2 more answers
The<br> is the time it takes for a wave to complete one cycle.
hichkok12 [17]

Answer:

Time Period

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Two Velocities in a Traveling Wave? Wave motion is characterized by two velocities: the velocity with which the wave moves in th
    14·1 answer
  • Rasheed ran down the football field at a speed of 7m/s. If he got to the end in 23
    11·1 answer
  • Describe an object that has decreasing kinetic energy
    14·2 answers
  • PLEASE PLEASE PLEASE HELP!!!! WILL MARK BRAINILIEST!!!!!!!!!!!
    9·1 answer
  • In a women's 100-m race, accelerating uniformly, Laura takes 1.82 s and Healan 3.07 s to attain
    9·1 answer
  • What is the answer, friends?
    5·1 answer
  • Please help me!
    13·1 answer
  • Should I take physics or biology?
    10·2 answers
  • SCIENCE whoever gets this first will get a brainlest
    9·2 answers
  • What does the evidence in this passage suggest?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!