Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string = 
linear density of the string = 
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
The third (left hand corner) since the x and y are both negative.
The sound mixer will need to increase the amplitude of the sound wave produced by the singer which will increase the loudness of the sound.
<h3>Amplitude of sound wave</h3>
The amplitude of a sound wave is the maximum vertical displacement of the sound wave.
The sound mixer will need to increase the amplitude of the sound wave produced by the singer.
The increase in the amplitude of the sound wave produced by the lower tune singer will result in increased loudness of the sound.
Thus, the sound mixer will need to increase the amplitude of the sound wave produced by the singer which will increase the loudness of the sound.
Learn more about sound waves here: brainly.com/question/1199084
Answer:
correct option is a. True
Explanation:
solution
the noise floor is AWGN ( additive white Gaussian noise )
and when viewed in the frequency domain, it is the continuous noise level
because as they have a uniform power over all the frequency.
so that it is additive white Gaussian noise
as we can say given statement is True
correct option a true
<span>Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius about nine times that of Earth.</span>