Answer:
13.91 m/s
Explanation:
First we need to find the acceleration:
Acceleration = Force/mass
Acceleration = 36.7N/7.41 kg
Acceleration = 4.95 m/s² (rounded to two decimal places)
Then we find the velocity:
Velocity = Acceleration * Time
Velocity = 4.95 m/s² * 2.81 s
Velocity = 13.91 m/s (rounded to two decimal places)
Answer:
Hello There!!
Explanation:
Electrons get their energy by absorbing light.
hope this helps,have a great day!!
~Pinky~
Answer:
8.5 m/s
Explanation:
please see paper for the work!
Answer:
v = 3.04 m/s
Explanation:
given,
mass of the block, M = 6.6 Kg
horizontal force, F = 12.2 N
distance, L = 2.5 m
initial speed = 0 m/s
speed of the block,v = ?
we now
Work done is equal to change in Kinetic energy.
Work done = Force x displacement
W = Δ K E
Δ K E = Force x displacement


3.3 v² = 30.5
v² = 9.242
v = 3.04 m/s
speed of the block is equal to 3.04 m/s
Answer:
= +3,394 103 m / s
Explanation:
We will solve this problem with the concept of the moment. Let's start by defining the system that is formed by the complete rocket before and after the explosions, bone with the two stages, for this system the moment is conserved.
The data they give is the mass of the first stage m1 = 2100 kg, the mass of the second stage m2 = 1160 kg and its final velocity v2f = +5940 m / s and the speed of the rocket before the explosion vo = +4300 m / s
The moment before the explosion
p₀ = (m₁ + m₂) v₀
After the explosion
pf = m₁
+ m₂ 
p₀ = [texpv_{f}[/tex]
(m₁ + m₂) v₀ = m₁
+ m₂
Let's calculate the final speed (v1f) of the first stage
= ((m₁ + m₂) v₀ - m₂
) / m₁
= ((2100 +1160) 4300 - 1160 5940) / 2100
= (14,018 10 6 - 6,890 106) / 2100
= 7,128 106/2100
= +3,394 103 m / s
come the same direction of the final stage, but more slowly