Answer:
<h2>4.1 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 0.205 × 20
We have the final answer as
<h3>4.1 N</h3>
Hope this helps you
Answer:
A
Explanation:
This is because distance traveled (i.e. displacement) is the integral of the velocity function, and velocity is the first derivative of the displacement function. To put this in perspective, the area bounded by a curve can be found by taking the integral of the equation of the curve, taking values on the x-axis as limits.
Maybe you can divide the volts its twelve if you do that but itll show you how much to double it by
Answer:
The acceleration of
is 
Explanation:
From the question we are told that
The mass of first block is 
The angle of inclination of first block is 
The coefficient of kinetic friction of the first block is 
The mass of the second block is 
The angle of inclination of the second block is 
The coefficient of kinetic friction of the second block is 
The acceleration of
are same
The force acting on the mass
is mathematically represented as

=> 
Where T is the tension on the rope
The force acting on the mass
is mathematically represented as


At equilibrium

So

making a the subject of the formula

substituting values 
=> 