Answer:
Explanation:
Ignoring friction, the acceleration will double
F = ma
2F = m(2a)
Answer:
The velocity will be v = 22.1[m/s]
Explanation:
We can solve this problem by using the principle of energy conservation, where potential energy is converted to kinetic energy. For this problem we will take the point with maximum potential energy when the body is 25 [m] high. By the time the height is zero, the potential energy will have been transformed into kinetic energy, and we can find the velocity of the body.
![Ep = m*g*h\\where:\\m = mass = 88.2[kg]\\h = elevation = 25[m]\\g = gravity = 9.81 [m/s^2]\\Ep = 88.2*25*9.81 = 21631.05[J]\\](https://tex.z-dn.net/?f=Ep%20%3D%20m%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%2088.2%5Bkg%5D%5C%5Ch%20%3D%20elevation%20%3D%2025%5Bm%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5CEp%20%3D%2088.2%2A25%2A9.81%20%3D%2021631.05%5BJ%5D%5C%5C)
Now we know that the energy will be transformed.
![Ek=Ep\\Ek=0.5*m*v^{2} \\where:\\v=velocity [m/s]\\v=\sqrt{\frac{Ek}{0.5*m} } \\v=\sqrt{\frac{21631.05}{0.5*88.2} } \\v=22.14[m/s]](https://tex.z-dn.net/?f=Ek%3DEp%5C%5CEk%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv%3Dvelocity%20%5Bm%2Fs%5D%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7BEk%7D%7B0.5%2Am%7D%20%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B21631.05%7D%7B0.5%2A88.2%7D%20%7D%20%5C%5Cv%3D22.14%5Bm%2Fs%5D)
Answer:The factors which are used to calculate the kinetic energy of an object are mass and velocity. Explanation: The kinetic energy is the energy of the motion of an object. Here, m is the mass of the object and v is the velocity of the object.
Explanation:
hope it helps
Answer is in a photo. I can only upload it to a file hosting service. link below!
bit.
ly/3a8Nt8n