C 1.6 amps hipe this helps
Answer:
D
Explanation:
The power equation is P= V^2/R
Please let me know if this helped! Please rate it the brainlist if possible!
Answer:
1
Explanation:
it was thinking about how much and then the other than you can get it would be able to ask her to be able and then the way you have been sent from your browser
Answer:
(a) They must have same direction
(b) It is not necessary for them to have same magnitudes
Explanation:
(a)
Momentum is a vector quantity. It is the product of mass (scalar) and velocity (vector). Thus, if the direction of velocity is changed, then as a result the direction of momentum will also change or its magnitude or component in the same direction will change. Hence, for the two objects to have same momentum, the directions of their velocities must also be the same.
(b)
Since, the momentum is product of velocity and mass. It is possible that two bodies of different masses with different velocities might have same momentum, provided the direction of their velocities is same.
For example, take a body of mass 4 kg moving with speed 5 m/s. It will have a momentum of 20 N.s. Now, consider another body of mass 2 kg, moving with speed 10 m/s. It will also have a momentum of 20 N.s.
Thus, it is not necessary for two objects to have same magnitude of velocity to have same momentum.
Answer:
4000 Hz
Explanation:
An anti-alias filter is usually added in front of the ADC to limit a certain range of input frequencies in order to avoid aliasing. This filter is usually a low pass filter that passes low frequencies but attenuates the high frequencies.
The Nyquist sampling criteria states that the sampling rate should be at least twice the maximum frequency component of the desired signal.
Sampling rate = 2(max input frequency)
From the relation we can find out the cut-off frequency for the anti-aliasing filter.
max input frequency = sampling rate/2
max input frequency = 8100/2 = 4050 Hz
Therefore, 4000 Hz would be an appropriate cut-off frequency for the anti-aliasing filter.