Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom
Answer: 
Explanation:
This problem can be solved by the following equation:

Where:
is the change in kinetic energy
is the electric potential difference
is the electric charge
Finding
:


Finally:

Answer:
1.82 rad/s².
Explanation:
Applying,
α = (ω₂-ω₁)/t..................... Equation 1
Where α = angular acceleration of the fan blades, ω₂ = final angular velocity of the fan blades, ω₁ = initial angular velocity of the fan blades, t = time.
Given: ω₂ = 350 rpm = (350×0.1047) rad/s = 36.645 rad/s. ω₁ = 250 rpm = (250×0.1047) rad/s = 26.175 rad/s, t = 5.75 s.
Substitute into equation 1
α = (36.645-26.175)/5.75
α = 10.47/5.75
α = 1.82 rad/s².
Hence the magnitude of the angular acceleration of the fan blades = 1.82 rad/s²
Answer:
A = 4.6 [m²]
Explanation:
The area of a circle can be calculated by means of the following equation.

where:
A = area [m²]
D = diameter = 2.42 [m]
Now replacing:
![A=\frac{\pi }{4} *(2.42)^{2} \\A = 4.6 [m^{2} ]](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%20%2A%282.42%29%5E%7B2%7D%20%5C%5CA%20%3D%204.6%20%5Bm%5E%7B2%7D%20%5D)