Answer:
- <em>During the polymerization of a 20 monomer-long cellulose molecule,</em> <u>19 molecules of water are released.</u>
<u></u>
Explanation:
In simple terms, <em>cellulose </em>is the biopolymer formed by many glucose units. This is cellulose is the polymer and glucose is the monomer.
To have a <em>20 monomer-long cellulose molecule</em>, 20 monomers have been chemically bonded by reacting 19 times, as it is explained in the next paragrpahs, and so 19 molecules of water have been released.
You can imaging the polymerization process as a step-by-step reaction in which the first step is the condensation reaction of one glucose molelecule to produce a 2 monomer-long chain, with the release of one molecule of water: the second step would be the condensation reaction between the 2 monomer-long chain with another glucose molecule, with the release of an additional molecule of water, and so on, until 19 condensation reactions happen, to obtain the 20 monomer-long cellulose molecule.
Condensation is the loss of water in a chemical reaction.
When two glucose molecules react together, condensation occurs. One OH group from each glucose molecule come together, the OH from one glucose molecule combines with the H part of the OH from the other glucose molecule, to form H₂O (water that is released).
The two glucose molecules (monomers) will form one bigger molecule where the two glucose monomers are bonded through the oxygen atom that did not form part of the water molecule released.
Then, a 20-monomer chain means 19 condenstation reactions, with the release of 19 molecules of water.
The decreasing order of wavelengths of the photons emitted or absorbed by the H atom is : b → c → a → d
Rydberg's formula :
,
where λ is the wavelength of the photon emitted or absorbed from an H atom electron transition from
to
and
= 109677 is the Rydberg Constant. Here
and
represents the transitions.
(a)
=2 to
= infinity
= 109677/4 [since 1/infinity = 0] Therefore,
= 4 / 109677 = 0.00003647 m
(b)
=4 to
= 20
= 6580.62
Therefore,
= 1 / 6580.62 = 0.000152 m
(c)
=3 to
= 10
= 11089.56
Therefore,
= 1 / 11089.56 = 0.00009 m
(d)
=2 to
= 1
= - 82257.75
Therefore,
= 1 /82257.75 = - 0.0000121 m
[Even though there is a negative sign, the magnitude is only considered because the sign denotes that energy is emitted.]
So the decreasing order of wavelength of the photon absorbed or emitted is b → c → a → d.
Learn more about the Rydberg's formula athttps://brainly.com/question/14649374
#SPJ4
Answer:
<h2>93.02 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>93.02 moles</h3>
Hope this helps you
Answer:
a) 
b) entropy of the sistem equal to a), entropy of the universe grater than a).
Explanation:
a) The change of entropy for a reversible process:


The energy balance:
![\delta U=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=%5Cdelta%20U%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)
If the process is isothermical the U doesn't change:
![0=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=0%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)


The work:

If it is an ideal gas:


Solving:

Replacing:


Given that it's a compression: V2<V1 and ln(V2/V1)<0. So:

b) The entropy change of the sistem will be equal to the calculated in a), but the change of entropy of the universe will be 0 in a) (reversible process) and in b) has to be positive given that it is an irreversible process.
Both generators and batteries both convert a form of energy into electrical energy. In a battery, a chemical reaction takes place which converts chemical energy into electrical energy. In a generator however, many times mechanical energy is being converted into electrical energy. A process called electromagnetic induction can take place in some generator which is where an electromagnet is used to help conduct electricity. hope this helped!!!