Answer:
Velocity (magnitude) is 98.37 m/s
Explanation:
We use the vertical component of the initial velocity, which is:

Using kinematics expression of vertical velocity (in y direction) for an accelerated motion (constant acceleration, which is gravity):

Now we need to find
as a function of
. We use the horizontal velocity, which is always the same as follow:

We know the angle at 3 seconds:

Substitute
in
and then solve for 

With this expression we go back to the kinematic equation and solve it for initial speed

The velocity of penguin as he ends where he started was 0 m/s.
<h3>What is displacement?</h3>
Displacement is the length of straight line joining the initial and final position of the body.
Given is a penguin who waddled 8 m uphill before sliding back down to its friends in 2 seconds.
We know that the velocity is the rate of change of displacement with respect to time. Mathematically -
v = dx/dt
dx = v dt
∫dx = ∫v dt
Δx = vΔt
v = Δx/Δt
Now, the displacement of the penguin will be = Δx = 8 - 8 = 0
Then, its velocity will be -
v = 0/Δt = 0
Therefore, the velocity of penguin as he ends where he started was 0 m/s.
To solve more questions on kinematics, visit the link below-
brainly.com/question/27200847
#SPJ1
<span>step 1: energy required to heat coffee
E = m Cp dT
E = energy to heat coffee
m = mass coffee = 225 mL x (0.997 g / mL) = 224g
Cp = heat capacity of coffee = 4.184 J / gK
dT = change in temp of coffee = 62.0 - 25.0 C = 37.0 C
E = (224 g) x (4.184 J / gK) x (37.0 C) = 3.46x10^4 J
step2: find energy of a single photon of the radiation
E = hc / λ
E = energy of the photon
h = planck's constant = 6.626x10^-34 J s
c = speed of light = 3.00x10^8 m/s
λ = wavelength = 11.2 cm = 11.2 cm x (1m / 100 cm) = 0.112 m
E = (6.626x10^-34 J s) x (3.00x10^8 m/s) / (0.112 m) = 1.77x10^-16 J
step3: Number of photons
3.46x10^4 J x ( 1 photon / 1.77x10^-16 J) = 1.95x10^20 photons</span>
Answer:
(a): The resultant force acting on the object are F= (5.99 i + 14.98 j).
(b): The magnitude of the resultant force are F= 16.4 N < 68.19º .
Explanation:
m= 3kg
a= 2 i + 5 j = 5 .38 < 68.19 º
F= m * a
F= 3* ( 5.38 < 68.19º )
F= 16.4 N < 68.19º
Fx= F * cos(68.19º)
Fx= 5.99
Fy= F* sin(68.19º)
Fy= 14.98
It's a bit of a trick question, had the same one on my homework. You're given an electric field strength (1*10^5 N/C for mine), a drag force (7.25*10^-11 N) and the critical info is that it's moving with constant velocity(the particle is in equilibrium/not accelerating).
<span>All you need is F=(K*Q1*Q2)/r^2 </span>
<span>Just set F=the drag force and the electric field strength is (K*Q2)/r^2, plugging those values in gives you </span>
<span>(7.25*10^-11 N) = (1*10^5 N/C)*Q1 ---> Q1 = 7.25*10^-16 C </span>