Force = mass * acceleration
Here is an equation for force, used to calculate force.
Look at it this way:-
Joules is used to measure force, while mass is measured by kg. Acceleration is measured by m/s/s (meters per second per second, or meters per second squared.)
joules = m/s/s * kg
Which makes everything fit in just right! :D

Explanation:
Natural length of a spring is
. The spring is streched by
. The resultant energy of the spring is
.
The potential energy of an ideal spring with spring constant
and elongation
is given by
.
So, in the current problem, the natural length of the spring is not required to find the spring constant
.

∴ The spring constant of the spring = 
Answer:
The capacitance is cut in half.
Explanation:
The capacitance of a plate capacitor is directly proportional to the area A of the plates and inversely proportional to the distance between the plates d. So if the distance was doubled we should expect that the capacitance would be cut in half. That can be verified by the following equation that is used to compute the capacitance in such cases:
C = (\epsilon)*(A/d)
Where \epsilon is a constant that represents the characteristics for the insulator between the plates. A is the area of the plates and d is the distance between them. When we double d we have a new capacitance, given by:
C_new = (\epsilon)*(A/2d)
C_new = (1/2)*[(\epsilon)*(A/d)]
Since C = (\epsilon)*(A/d)] we have:
C_new = (1/2)*C
Answer:
<h3>Because one Coulomb of charge is an abnormally large quantity of charge, the units of microCoulombs (µC) or nanoCoulombs (nC) are more commonly used as the unit of measurement of charge. To illustrate the magnitude of 1 Coulomb, an object would need an excess of 6.25 x 1018 electrons to have a total charge of -1 C.</h3>
Explanation:
<h3><em><u>mark as brainliast</u></em></h3><h3><em><u>indian </u></em><em><u>genius </u></em><em><u>s</u></em><em><u>a</u></em><em><u>r</u></em><em><u>thak</u></em></h3>