<span>When the Moon is directly between the Sun and Earth, a spring tide will occur along a shoreline that is facing the Moon.
</span>
The first law of thermodynamics can be written as

where

is the variation of internal energy of the system

is the amount of heat absorbed by the system

is the work done by the system on the surrounding.
Using this form, the sign convention for Q and W becomes:
Q > 0 --> heat absorbed by the system (because it increases the internal energy)
Q < 0 --> heat released by the system (because it decreases the internal energy)
W > 0 --> work done by the system (for instance, an expansion: when the system expands, it does work on the surrounding, and so the internal energy decreases, this is why there is a negative sign in the formula Q-W)
W < 0 --> work done by the surrounding on the system (for instance, a compression: when the system is compressed, the surrounding is doing work on the system, and so the internal energy of the system increases)
Answer:
The mini Cooper will experience the greater force
Explanation:
Generally, a bulldozer has a greater mass compared to a Mini Cooper hence when both of these vehicles interact in an head on collision the Mini Cooper will experience a greater force because the bulldozer has a greater momentum
Answer:
3.75 MeV
Explanation:
The energy of the photon can be given in terms of frequency as:
E = h * f
Where h = Planck's constant
The frequency of the photon is 6 * 10^20 Hz.
The energy (in Joules) is:
E = 6.63 x10^(-34) * 6 * 10^(20)
E = 39.78 * 10^(-14) J = 3.978 * 10^(-13) J
We are given that:
1 eV = 1.06 * 10^(-19) Joules
This means that 1 Joule will be:
1 J = 1 / (1.06 * 10^(-19)
1 J = 9.434 * 10^(18) eV
=> 3.978 * 10^(-13) J = 3.978 * 10^(-13) * 9.434 * 10^(18) = 3.75 * 10^(6) eV
This is the same as 3.75 MeV.
The correct answer is not in the options, but the closest to it is option C.