Answer:
THE CURRENT REQUIRED TO PRODUCE 193000 C OF ELECTRICITY IS 35.74 A.
Explanation:
Equation:
Al3+ + 3e- -------> Al
3 F of electricity is required to produce 1 mole of Al
3 F of electricity = 27 g of Al
If 18 g of aluminium was used, the quantity of electricity to be used up will be:
27 g of AL = 3 * 96500 C
18 G of Al = x C
x C = ( 3 * 96500 * 18 / 27)
x C = 193 000 C
For 18 g of Al to be produced, 193000 C of electricity is required.
To calculate the current required to produce 193 000 C quantity of electricity, we use:
Q = I t
Quantity of electricity = Current * time
193 00 = I * 1.50 * 60 * 60 seconds
I = 193 000 / 1.50 * 60 *60
I = 193 000 / 5400
I = 35.74 A
The cuurent required to produce 193,000 C of electricity by 18 g of aluminium is 35.74 A
Mass, if you know what element you are working with.
Answer:
Oxides are chemical compounds with one or more oxygen atoms combined with another element (e.g. Li2O). Oxides are binary compounds of oxygen with another element, e.g., CO2, SO2, CaO, CO, ZnO, BaO2, H2O, etc. These are termed as oxides because here, oxygen is in combination with only one element.
Explanation:
Answer:
Reducing molecules.
Explanation:
NAD (Nicotinamide adenine dinucleotide) is the important molecule used by the living organisms for the generation of ATP. NADH is used almost in every biochemical cycle like glycolysis, kreb cycle and elelctron transport chain.
The NADH molecule is used as the reducing molecule in the biosynthesis of the different reaction. The NADH molecule reduces its hydrogen ions and also carry electrons for the synthesis of molecules. The NADH molecule is also used in the shuttle system as well.
Thus, the answer is reducing molecules.
The mentioned molecule with formula, CH₃NO where no bond is found between N and O can be depicted as formamide is shown in the attachment below.
The formal charges = Number of valence electrons for the atom (V) - the number of electrons in lone pairs (N) - 1/2 (number of electrons in bond pairs, B)
FC = V - N - B/2
Thus, there is a need to calculate valence electrons, electrons in lone pairs, and the number of electrons in bond pairs for each atom in the mentioned molecule.
V or valence electrons on C = 4e, on H = 1e, on N = 5e, and on O = 6e.
N or electrons in lone pairs on C = 0e, on H = 0e, on N = 2e, and on O = 4e.
B or number of electrons in bond pairs for C = 8e, for H = 2e, for N = 6e, and for O = 4e.
Thus, the formal charges for each will be,
C = 4 - 0 - (8/2) = 0
H = 1 - 0 - (2/2) = 0
N = 5 - 2 - (6/2) = 0
O = 6 - 4 - (4/2) = 0
Lewis dot structure for the given molecule is given in the attachment below: