In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
v_f = 6.92 x 10^(4) m/s
Explanation:
From conservation of energy,
E = (1/2)mv² - GmM/r
Where M is mass of sun
Thus,
E_i = E_f will give;
(1/2)mv_i² - GmM/(r_i) = (1/2)mv_f² - GmM/(r_f)
m will cancel out to give ;
(1/2)v_i² - GM/(r_i) = (1/2)v_f² - GM/(r_f)
Let's make v_f the subject;
v_f = √[(v_i)² + 2MG((1/r_f) - (1/r_i))]
G is Gravitational constant and has a value of 6.67 x 10^(-11) N.m²/kg²
Mass of sun is 1.9891 x 10^(30) kg
v_i = 2.1×10⁴ m/s
r_i = 2.5 × 10^(11) m
r_f = 4.9 × 10^(10) m
Plugging in all these values, we have;
v_f = √[(2.1×10⁴)² + 2(1.9891 x 10^(31)) (6.67 x 10^(-11))((1/(4.9 × 10^(10))) - (1/(2.5 × 10^(11)))] 20.408 e12
v_f = √[(441000000) + 2(1.9891 x 10^(30)) (6.67 x 10^(-11))((16.408 x 10^(-12))]
v_f = √[(441000000) + (435.38 x 10^(7))
v_f = 6.92 x 10^(4) m/s
Answer:
5. The 2 features we need to harness the energy from tides are when tides come in and when tides come out.
6. Tidal energy is the most predictable type of renewable energy is because we know the exact locations of the sun and moon all year round.
Answer:
q = square root (4KsL³/k)
The force of extension of the spring is equal to the force of repulsion between the two like charges. Two like charges(positive or negative) would always repel each other and two unlike charges would always attract each other. This electric force between the charges is what is responsible for the stretching of the spring. The electric force causes the spring to increase in length from L to 2L. Equating these forces, that is the electric force between the charges and the elastic force of the spring and rearranging the variables gives the expression to obtain q.
Explanation:
See the attachment below for full solution.