Answer:
v_f = 6.92 x 10^(4) m/s
Explanation:
From conservation of energy,
E = (1/2)mv² - GmM/r
Where M is mass of sun
Thus,
E_i = E_f will give;
(1/2)mv_i² - GmM/(r_i) = (1/2)mv_f² - GmM/(r_f)
m will cancel out to give ;
(1/2)v_i² - GM/(r_i) = (1/2)v_f² - GM/(r_f)
Let's make v_f the subject;
v_f = √[(v_i)² + 2MG((1/r_f) - (1/r_i))]
G is Gravitational constant and has a value of 6.67 x 10^(-11) N.m²/kg²
Mass of sun is 1.9891 x 10^(30) kg
v_i = 2.1×10⁴ m/s
r_i = 2.5 × 10^(11) m
r_f = 4.9 × 10^(10) m
Plugging in all these values, we have;
v_f = √[(2.1×10⁴)² + 2(1.9891 x 10^(31)) (6.67 x 10^(-11))((1/(4.9 × 10^(10))) - (1/(2.5 × 10^(11)))] 20.408 e12
v_f = √[(441000000) + 2(1.9891 x 10^(30)) (6.67 x 10^(-11))((16.408 x 10^(-12))]
v_f = √[(441000000) + (435.38 x 10^(7))
v_f = 6.92 x 10^(4) m/s