1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ryzh [129]
4 years ago
9

Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.1×104 m/s when at a distance

of 2.5×1011 m from the center of the sun, what is its speed when at a distance of 4.9×1010 m .Express your answer using two significant figures.
Physics
1 answer:
trapecia [35]4 years ago
5 0

Answer:

v_f = 6.92 x 10^(4) m/s

Explanation:

From conservation of energy,

E = (1/2)mv² - GmM/r

Where M is mass of sun

Thus,

E_i = E_f will give;

(1/2)mv_i² - GmM/(r_i) = (1/2)mv_f² - GmM/(r_f)

m will cancel out to give ;

(1/2)v_i² - GM/(r_i) = (1/2)v_f² - GM/(r_f)

Let's make v_f the subject;

v_f = √[(v_i)² + 2MG((1/r_f) - (1/r_i))]

G is Gravitational constant and has a value of 6.67 x 10^(-11) N.m²/kg²

Mass of sun is 1.9891 x 10^(30) kg

v_i = 2.1×10⁴ m/s

r_i = 2.5 × 10^(11) m

r_f = 4.9 × 10^(10) m

Plugging in all these values, we have;

v_f = √[(2.1×10⁴)² + 2(1.9891 x 10^(31)) (6.67 x 10^(-11))((1/(4.9 × 10^(10))) - (1/(2.5 × 10^(11)))] 20.408 e12

v_f = √[(441000000) + 2(1.9891 x 10^(30)) (6.67 x 10^(-11))((16.408 x 10^(-12))]

v_f = √[(441000000) + (435.38 x 10^(7))

v_f = 6.92 x 10^(4) m/s

You might be interested in
A 0.03 kg baby sea turtle moves across the sand toward the ocean at 0.3 m/s. What is her kinetic energy in Joules?
lina2011 [118]

Answer:

.00135 j

Explanation:

K.E. = 1/2   m  v^2

       = 1/2 * .03 * .3^2 = .00135 j

4 0
2 years ago
This problem is based on the whole idea of pressure but I’m having trouble on when the area circle formula is included.
Mice21 [21]

Answer:

6.23x10^6Pa

Explanation:

Data obtained from the question include:

F (force) = 490N

r (radius) = 0.005m

A (area of the circlular heel) =?

P (pressure) =.?

First, we'll begin by calculating the area of the circlular heel. This is illustrated below:

Area of circle = πr^2

Area = 22/7 x (0.00)^2

Area = 7.86x10^-5m^2

Pressure is simply force per unit area. It represented mathematically as

Pressure = Force /Area

Pressure = 490/7.86x10^-5

Pressure = 6.23x10^6N/m2

Recall: 1N/m2 = 1Pa

Therefore, 6.23x10^6N/m2 = 6.23x10^6Pa

Therefore, the woman exert a pressure of 6.23x10^6Pa on the floor

8 0
4 years ago
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
An object moves in the eastward direction at constant speed. A net force directed northward acts on the object for 5.0 s. At the
Pie

Answer: D

The final velocity of the object will be directed north of east

Explanation:

8 0
4 years ago
Read 2 more answers
A typical adult can deliver about 12.5 N·m of torque when attempting to open a twist-off cap on a bottle. Assume that bottle cap
Nikitich [7]
Uhhhhhhhhh just tryna get a point so I can ask a question so eh I’m using ur question heheheheheh
3 0
3 years ago
Other questions:
  • Volume of sound is controlled by the _____ of a wave
    10·1 answer
  • Which of the following describes a chemical change
    15·2 answers
  • The eagle drops the trout a height of 6.1 m the fish travels 7.9 m horizontaly before hitting the water what is the velocity of
    6·1 answer
  • Hardness refers to the strength of the forces holding atoms together in a solid mineral. The Mohs scale will tell how easily a m
    8·1 answer
  • A mouse runs along a baseboard in your house. The mouse's position as a function of time is given by x(t)=pt 2+qt, with p = 0.36
    6·1 answer
  • How do distinctive rock strata support the theory of continental drift?
    9·1 answer
  • Which type of bonding is found in all molecular substances
    5·1 answer
  • Which statement describes a climate condition?
    13·1 answer
  • Pls answer ASAP pls bc I’m tryna get my grade up please
    12·1 answer
  • 1. In the image below, the purple particles are protons and the white particles are neutrons. Which of the following equations m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!