Answer:
The relationship between the initial stored energy
and the stored energy after the dielectric is inserted
is:
c) 
Explanation:
A parallel plate capacitor with
that is connected to a voltage source
holds a charge of
. Then we disconnect the voltage source and keep the charge
constant . If we insert a dielectric of
between the plates while we keep the charge constant, we found that the potential decreases as:

The capacitance is modified as:

The stored energy without the dielectric is
The stored energy after the dielectric is inserted is:

If we replace in the above equation the values of V and C we get that


Finally

The correct answer is B.
Let us think of the classical theory first. In the classical theory, light is a wave that gives energy. This energy gradually helps the electron jump to a higher energy level.
In quantum theory, this is wrong; an electron cannot absorb a small amout of energy because there is not close enough state to jump to with that energy; only very specific amounts of energy lead to a change in orbital levels/ absorbance of energy. Also, each pair of energy levels has a specific energy difference that is needed from an electron so that it can move.
Hence, B is correct; all other sentences describe classical models of light-electron interactions
Answer:
25000J
Explanation:
Formula : Q = m×c×Δt
Q=Heat energy
m= mass
c=specific heat capacity
ΔT = change in temperature.
Q=M x C for this question.
Specific heat capacity = 2500 J/Kg
Mass = 10kg
2500 x 10 = 25000 J