Answer:
2.49 * 10^(-4) m
Explanation:
Parameters given:
Frequency, f = 4.257 MHz = 4.257 * 10^6 Hz
Speed of sound in the body, v = 1.06 km/ = 1060 m/s
The speed of a wave is given as the product of its wavelength and frequency:
v = λf
Where λ = wavelength
This implies that:
λ = v/f
λ = (1060) / (4.257 * 10^6)
λ = 2.49 * 10^(-4) m
The wavelength of the sound in the body is 2.49 * 10^(-4) m.
Answer:
5 m/s2
Explanation:
The total acceleration of the circular motion is made of 2 components: centripetal acceleration and linear acceleration of 4 m/s2. They are perpendicular to each other.
The centripetal acceleration is the ratio of instant velocity squared and the radius of the circle

So the magnitude of the total acceleration is

Answer:
1.61 second
Explanation:
Angle of projection, θ = 53°
maximum height, H = 7.8 m
Let T be the time taken by the ball to travel into air. It is called time of flight.
Let u be the velocity of projection.
The formula for maximum height is given by

By substituting the values, we get

u = 9.88 m/s
Use the formula for time of flight


T = 1.61 second
pitch goes up on approach ... Doppler effect