1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
2 years ago
10

If it were possible to move a star towards the earth then its apparent magnitude number would ______ while its absolute magnitud

e number would _______.
Physics
1 answer:
ArbitrLikvidat [17]2 years ago
5 0

If it were possible to move a star towards the earth then its apparent magnitude number would decrease while its absolute magnitude number would stay the same.

Definition of apparent magnitude:

The luminosity of a celestial body (such as a star) as observed from the earth compare absolute magnitude.

So for example, the apparent magnitude of the Sun is -26.7 and is the brightest celestial object we can see from Earth. However, if the Sun were 10 parsecs away, its apparent magnitude would be +4.7, only about as bright as Ganymede appears to us on Earth.

Definition of absolute magnitude:

Absolute magnitude is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale.

To learn more about apparent magnitude here

brainly.com/question/2949443

#SPJ4

You might be interested in
A solid cylinder of mass M = 45 kg, radius R = 0.44 m and uniform density is pivoted on a frictionless axle coaxial with its sym
user100 [1]

Answer:

w_f = 1.0345 rad/s

Explanation:

Given:

- The mass of the solid cylinder M = 45 kg

- Radius of the cylinder R = 0.44 m

- The mass of the particle m = 3.6 kg

- The initial speed of cylinder w_i = 0 rad/s

- The initial speed of particle V_pi = 3.3 m/s

- Mass moment of inertia of cylinder I_c = 0.5*M*R^2

- Mass moment of inertia of a particle around an axis I_p = mR^2

Find:

- What is the magnitude of its angular velocity after the collision?

Solution:

- Consider the mass and the cylinder as a system. We will apply the conservation of angular momentum on the system.

                                     L_i = L_f

- Initially, the particle is at edge at a distance R from center of cylinder axis with a velocity V_pi = 3.3 m/s contributing to the initial angular momentum of the system by:

                                    L_(p,i) = m*V_pi*R

                                    L_(p,i) = 3.6*3.3*0.44

                                    L_(p,i) = 5.2272 kgm^2 /s

- While the cylinder was initially stationary w_i = 0:

                                    L_(c,i) = I*w_i

                                    L_(c,i) = 0.5*M*R^2*0

                                    L_(c,i) = 0 kgm^2 /s

The initial momentum of the system is L_i:

                                    L_i = L_(p,i) + L_(c,i)

                                    L_i = 5.2272 + 0

                                    L_i = 5.2272 kg-m^2/s

- After, the particle attaches itself to the cylinder, the mass and its distribution around the axis has been disturbed - requires an equivalent Inertia for the entire one body I_equivalent. The final angular momentum of the particle is as follows:

                                   L_(p,f) = I_p*w_f

- Similarly, for the cylinder:

                                   L_(c,f) = I_c*w_f

- Note, the final angular velocity w_f are same for both particle and cylinder. Every particle on a singular incompressible (rigid) body rotates at the same angular velocity around a fixed axis.

                                  L_f = L_(p,f) + L_(c,f)

                                  L_f = I_p*w_f + I_c*w_f

                                  L_f = w_f*(I_p + I_c)

-Where, I_p + I_c is the new inertia for the entire body = I_equivalent that we discussed above. This could have been determined by the superposition principle as long as the axis of rotations are same for individual bodies or parallel axis theorem would have been applied for dissimilar axes.

                                  L_i = L_f

                                  5.2272 = w_f*(I_p + I_c)

                                  w_f =  5.2272/ R^2*(m + 0.5M)

Plug in values:

                                  w_f =  5.2272/ 0.44^2*(3.6 + 0.5*45)

                                  w_f =  5.2272/ 5.05296

                                  w_f = 1.0345 rad/s

5 0
3 years ago
Are the two expressions equvalent 7(8x+5) and 48x + 35
Evgesh-ka [11]
Yes they are equivalent because 7x5=35 and 8x x 5=48x
4 0
3 years ago
PLS HELP ME OUT!!
MaRussiya [10]
In order to solve this problem, we must first find out the value of each line on the number line. However, we can make this problem more simple by ignoring every interval except for the ones between 0 and 6. There are three total intervals in between 0 and 6 (including 6 and excluding 0). Therefore, we can do 6/2, and get an interval value of 2. This means that each line adds a value of 2. Since the car is only one line past zero, we only have to add one value of 2. Since 0 + 2 = 2, our final answer is C. 2.

Hope this helps!
4 0
3 years ago
Read 2 more answers
Point charges of 21.0 μC and 47.0 μC are placed 0.500 m apart. (a) At what point (in m) along the line connecting them is the el
rewona [7]

Answer:

a) x = 0.200 m

b)E = 3.84*10^{-4} N/C

Explanation:

q_1 = 21.0\mu C

q_1 = 47.0\mu C

DISTANCE BETWEEN BOTH POINT CHARGE = 0.5 m

by relation for electric field we have following relation

E = \frac{kq}{x}^2

according to question E = 0

FROM FIGURE

x is the distance from left point charge where electric field is zero

\frac{k21}{x}^2 = \frac{k47}{0.5-x}^2

solving for x we get

\frac{0.5}{x} = 1+ \sqrt{\frac{47}{21}}

x = 0.200 m

b)electric field at half way mean x =0.25

E =\frac{k*21*10^{-6}}{0.25^2} -\frac{k*47*10^{-6}}{0.25^2}

E = 3.84*10^{-4} N/C

6 0
3 years ago
Read 2 more answers
what principle is responsible for alternating light and dark bands when light passes through two or more narrow slits?
olya-2409 [2.1K]

The superposition principle is responsible for alternating light and dark bands when light passes through two or more narrow slits.

The intensity pattern that appears on the lit screen is determined by the superposition principle. When the difference in pathways from the two slits to a location on the screen equals an integral number of wavelengths (0,λ,2λ ,...), constructive interference takes place.

The fact that the two waves' crests follow different paths ensures that they do. A distinctive pattern of brilliant and dark fringes is seen when monochromatic light illuminates a distant screen after passing through two small openings. The superposition of overlapping light waves coming from the two slits results in this interference pattern.

Learn more about superposition principle here;

brainly.com/question/2699638

#SPJ4

7 0
1 year ago
Other questions:
  • The force component along the displacement varies with the magnitude of the displacement, as shown in the graph. (a) 0 to 1.0 m,
    6·1 answer
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • If molecules in a substance move FASTER will the TEMPERATURE increase or decrease?
    14·1 answer
  • Can anyone give me the description of the element mercury is positioned on the periodic table of elements and a list of other el
    15·1 answer
  • What is the actual land form of a shield volcano?<br><br> PLEASE HELP
    10·2 answers
  • Magnetic attraction is one of the chemical properties of matter *<br><br> True<br> False
    10·1 answer
  • Please help me answer this question !
    15·1 answer
  • Ocean waves with a wavelength of 12.9 m are
    14·1 answer
  • What is the coldest place on earth
    7·1 answer
  • Alchemists searched for ways to change lead into gold. Which type of change
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!