You have to use the equation PV=nRT.
P=pressure (in this case 1.89x10^3 kPa which equals 18.35677 atm)
1V=volume (in this case 685L)
n=moles (in this case the unknown)
R=gas constant (0.08206 (L atm)/(mol K))
T=temperature (in this case 621 K)
with the given information you can rewrite the ideal gas law equation as n=PV/RT.
n=(18.35677atm x 685L)/(0.08206atmL/molK x 621K)
n=246.8 moles
I believe it's the second option. 2 or more elements joined together such that the elements have lost their individual identity in favour of a new set of properties.
Answer:
eletrons
Explanation:
eletrons is not in the neuclus its around it
Answer:
The answers to the question are
1. 2nd and above order order
2. 2nd order
3. 1/2 order
4. 1st order
5. 0 order
Explanation:
We have 
1. For nth order reaction half life
∝ ![\frac{1}{[A_{0} ]^{n-1} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA_%7B0%7D%20%5D%5E%7Bn-1%7D%20%7D)
Therefore for a 0 order reaction increasing concentration of the reactant there will increase 
First order reaction is independent [A₀].
Second order reaction [A₀] decrease, increase.
Similarly for a third order reaction
1. 2nd order
2. 2nd order reaction
3. Order of reaction is 1/2.
4. 1st order reaction.
5. Zero order reaction.