Answer:
40m/s
Explanation:
The horizontal component of velocity remains constant because there are no external forces in that direction
By applying motion equations, V= U+ at
where ,
- v - final velocity
- u - initial velocity
- a-acceleration
- t - time
v = u +at
As no force act on the ball ( we neglect air resistance here) no acceleration is seen,
So v = u = 40m/s
Answer:
The answer is A
Explanation:
When a rockets thrusters push on the ground the ground pushes back on the rocket with equal force in the opposite direction. Hence the rocket takes off.
Newtons third law of motion states, for every action there is an equal and opposite reaction.
F = net force acting on the elevator in upward direction = 3000 N
m = mass of the elevator = 1200 kg
a = acceleration of the elevator = ?
Acceleration of the elevator is given as
a = F/m
a = 3000/1200
a = 2.5 m/s²
v₀ = initial velocity of the elevator = 0 m/s
Y = displacement of the elevator = 15 m
t = time taken
Using the kinematics equation
Y = v₀ t + (0.5) a t²
15 = (0) t + (0.5) (2.5) t²
t = 3.5 sec
<span>Since frequency and wavelength have inverse relationship. It can be expressed by the equation:
ν.λ = c
Where,
v = frequency of the electromagnetic wave.
λ = it's wavelength
c = the speed of light in a vacuum.
v = 2.00 Ghz x 10^9 Hz / 1 Ghz = 2.00 x 10^9 Hz
that means that in one second it covers 2.00 x 10^9 cycles.
λ = 3.10^8 m/s / 2.00 x 10^9 /s = 1.25E-10 nanometers</span>
The complete observation about adding bulb 3 is the brightness of the bulbs has to do with power which considers both the voltage and the current: less voltage x less current = dimmer bulbs. In circuit A, the voltage is divided across the resistors and the current decreases as resistance increases. In circuit B, the voltage is the same in each parallel section of the circuit and the current through that section of the circuit only depends on the resistor in that section.
<h3>What is power of the circuit?</h3>
The power of the bulb or any resistor is equal to the product of voltage and current flowing through it.
P = VI
Circuit A has bulbs in series while the circuit B has bulbs in parallel.
When bulb 3 added to circuit A, the brightness of all the bulbs dimmed but when bulb 3 (R3) added to circuit B, nothing changed in the brightness of the bulb.
The brightness is depended on the power of the circuit. When both the voltage and current are less, the bulb will be dimmed. In circuit A, series resistors divide the voltage across them. In circuit B, voltage is equal for all the resistors.
Thus, the last option is correct.
Learn more about power.
brainly.com/question/2933971
#SPJ1