Answer:
A conduction is the answer
Explanation:
1) The equivalent resistance of two resistors in parallel is given by:

so in our problem we have

and the equivalent resistance is

2) If we have a battery of 12 V connected to the circuit, the current in the circuit will be given by Ohm's law, therefore:
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
Answer: 2.80 N/C
Explanation: In order to calculate the electric firld inside the solid cylinder
non conductor we have to use the Gaussian law,
∫E.ds=Q inside/ε0
E*2πrL=ρ Volume of the Gaussian surface/ε0
E*2πrL= a*r^2 π* r^2* L/ε0
E=a*r^3/(2*ε0)
E=6.2 * (0.002)^3/ (2*8.85*10^-12)= 2.80 N/C
Answer:C (198 seconds)
Explanation: The cyclist makes the first lap in (180.00 - 6.00) = 174.00 seconds. The average time per lap for all three circuits is (600.00 - 6.00) = 594/3 = 198 seconds.