An object is lifted from the surface of a spherical planet to an altitude equal to the radius of the planet.
As a result, the object's <em>mass remains the same</em>, and its <em>weight decreases</em> to 1/4 of whatever it is when the object is on the planet's surface.
<h2>Isaac Newton's First Law of Motion states, "A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force." What, then, happens to a body when an external force is applied to it? That situation is described by Newton's Second Law of Motion. </h2><h2>
equation as ∑F = ma
</h2><h2>
</h2><h2>The large Σ (the Greek letter sigma) represents the vector sum of all the forces, or the net force, acting on a body. </h2><h2>
</h2><h2>It is rather difficult to imagine applying a constant force to a body for an indefinite length of time. In most cases, forces can only be applied for a limited time, producing what is called impulse. For a massive body moving in an inertial reference frame without any other forces such as friction acting on it, a certain impulse will cause a certain change in its velocity. The body might speed up, slow down or change direction, after which, the body will continue moving at a new constant velocity (unless, of course, the impulse causes the body to stop).
</h2><h2>
</h2><h2>There is one situation, however, in which we do encounter a constant force — the force due to gravitational acceleration, which causes massive bodies to exert a downward force on the Earth. In this case, the constant acceleration due to gravity is written as g, and Newton's Second Law becomes F = mg. Notice that in this case, F and g are not conventionally written as vectors, because they are always pointing in the same direction, down.
</h2><h2>
</h2><h2>The product of mass times gravitational acceleration, mg, is known as weight, which is just another kind of force. Without gravity, a massive body has no weight, and without a massive body, gravity cannot produce a force. In order to overcome gravity and lift a massive body, you must produce an upward force ma that is greater than the downward gravitational force mg. </h2><h2>
</h2><h2>Newton's second law in action
</h2><h2>Rockets traveling through space encompass all three of Newton's laws of motion.
</h2><h2>
</h2><h2>If the rocket needs to slow down, speed up, or change direction, a force is used to give it a push, typically coming from the engine. The amount of the force and the location where it is providing the push can change either or both the speed (the magnitude part of acceleration) and direction.
</h2><h2>
</h2><h2>Now that we know how a massive body in an inertial reference frame behaves when it subjected to an outside force, such as how the engines creating the push maneuver the rocket, what happens to the body that is exerting that force? That situation is described by Newton’s Third Law of Motion.</h2><h2 />
Answer:
a = 2.44 m/s²
Explanation:
The Net force acting on the car downwards the plane will be equal to the component of the weight that is parallel to the plane.
Thus;
mg(sin θ) = ma
Thus;. g(sin θ) = a
g is acceleration due to gravity = 9.81 m/s²
θ = 14.4°
Thus;
9.81 × sin 14.4 = a
a = 2.44 m/s²
A person on Earth would weigh a lot more on the sun due to increased gravity.
The sun is a massive object as compared to the sun. It is assumed that the gravity must be a lot greater as well. It is the strong gravitational pull of the sun that keeps our planets from drifting off into space. No matter where you are the mass of an object will remain constant, so will the energy and the number of atoms they hold.
The answer is gravity.
A funnel shaped cloud is called a funnel cloud.
If it touches the ground it is called a tornado.