Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
Answer:
hshawi hdsdk
done and my name is fricking bella your gonna die
Answer:
Acceleration is the change in velocity over the change in time = Δv/Δt. To do these problems, you need to find out how much the speed changed and over what period of time it changed.
Snail 1 changes from 4 cm/min to 7 cm/min in 3 minutes. Subtract the starting velocity (4 cm/min) from the ending velocity (7 cm/min) then divide by the time (3 min):
Snail 1 = (7 cm/min. - 4 cm/min)/(3 minutes) = ? (remember to put down the units)
Snail 2 changed from 7 cm/min. down to 1 cm/min. in 3 minutes
Snail 2 = (1 cm/min. - 7 cm/min.)/(3 min.) = ? (note that the acceleration is negative when you slow down)
I hope this helps you
The earth is so round that we can run around it in five million days
hmax = 5740.48 m. The maximum height that a cannonball fired at 420 m/s at a 53.0° angles is 5740.48m.
This is an example of parabolic launch. A cannonball is fired on flat ground at 420 m/s at a 53.0° angle and we have to calculate the maximum height that it reach.
V₀ = 420m/s and θ₀ = 53.0°
So, when the cannonball is fired it has horizontal and vertical components:
V₀ₓ = V₀ cos θ₀ = (420m/s)(cos 53°) = 252.76 m/s
V₀y = V₀ cos θ₀ = (420m/s)(cos 53°) = 335.43m/s
When the cannoball reach the maximum height the vertical velocity component is zero, that happens in a tₐ time:
Vy = V₀y - g tₐ = 0
tₐ = V₀y/g
tₐ = (335.43m/s)/(9.8m/s²) = 34.23s
Then, the maximum height is reached in the instant tₐ = 34.23s:
h = V₀y tₐ - 1/2g tₐ²
hmax = (335.43m/s)(34.23s)-1/2(9.8m/s²)(34.23s)²
hmax = 11481.77m - 5741.29m
hmax = 5740.48m