Answer:
A = m³/s³ = [L]³/[T]³ = [L³T⁻³]
B = m³s = [L³T]
Explanation:
We have the equation:
V = At³ + B/t
where, the dimensions of each variable are as follows:
V = m³ = [L]³
t = s = [T]
substituting these in equation, we get:
m³ = A(s)³ + B/s
for the homogeneity of the equation:
A(s)³ = m³
<u>A = m³/s³ = [L]³/[T]³ = [L³T⁻³]</u>
Also,
B/s = m³
<u>B = m³s = [L³T]</u>
Deceleration—the ability to slow down and control force production—is often ignored during training; but deceleration technique is critical for most sports. Speed is often the factor that separates the elite from the average athlete. Credit source is stack.com have a nice day! I told you it was from the internet in case you couldn’t use the internet Hope this helped :)!
Answer: What do you need help with?
Explanation:
Option B would be right one
according to momentum conservation
6600*2 = 13200kgm/s
5400*3 = 16200kgm/s
16200-13200 = 3000
now 6600-5400 = 1200 kg
thus 3000/1200 = 2.5 v
Answer:
The combined gas equation relates three variables pressure, temperature and volume when the number of moles is constant.
The equation is PV / T = constant. Which is valid for a fixed number of moles of the gas.
You can derive the combined gas equation from the combination of Bolye's law, Charles' law and Gay-Lussac's law, which needs some algebra.
Explanation: