Work is force times distance. So here we have
W=(5000N)x(3000m)=1.5x10^7J
Or 15MJ (megajoules)
Answer:
The final pressure of the whole system is 34.80 atm.
Explanation:
Given that,
Volume = 45.0 ml
Volume of first bulb = 77.0 mL
Pressure = 8.89 atm
Volume of second bulb = 250 mL
Pressure = 2.82 atm
Volume of third bulb = 21.0 mL
Pressure = 8.42 atm
We need to calculate the final pressure of the whole system
Using formula of pressure

Where,
= pressure of first bulb
= pressure of second bulb
= pressure of third bulb
= initial pressure of tube
= Volume of first bulb
=Volume of second bulb
= Volume of third bulb
= Initial volume of tube
Put the value into the formula



Hence, The final pressure of the whole system is 34.80 atm.
<h2>Answer: Venus</h2>
Galileo was the first to use the telescope to observe the heavens, mainly observing the Moon, the Sun with its sunspots, Jupiter with its moons and Venus (in the early 1600s).
In the case of Venus, he observed that it presented phases (such as those of the moon) together with a variation in size; observations that are only compatible with the fact that Venus rotates around the Sun and not around Earth.
This is because Venus presented its smaller size when it is in full phase and the largest size when it is in the new one, when it is between the Sun and the Earth.
These images along with other discoveries were presented to the Catholic Church (which supported the <u>geocentric theory</u> for that time) as a proof that completely refutes Ptolemy's geocentric system and affirms <u>Copernicus' heliocentric theory.</u>
According to the plot, static friction force has a maximum magnitude of around 3.0 N, and kinetic friction has a magnitude of about 1.5 N.
The plot appears to be telling you the force required to get the yellow block moving along the table. If one applies less than 3.0 N of force, the block remains motionless. But as soon as it starts to slide, one need only apply 1.5 N of force to keep it moving (presumably at a constant speed).