A neutral carbon doesn't lack any electrons. It has exactly the same number of electrons as it has neutrons.
However, it has four electrons in its outer shell in comparison with eight electrons for a noble gas.
In that sense, it needs four electrons to complete its second shell.<span />
The standard formation equation for glucose C6H12O6(s) that corresponds to the standard enthalpy of formation or enthalpy change ΔH°f = -1273.3 kJ/mol is
C(s) + H2(g) + O2(g) → C6H12O6(s)
and the balanced chemical equation is
6C(s) + 6H2(g) + 3O2(g) → C6H12O6(s)
Using the equation for the standard enthalpy change of formation
ΔHoreaction = ∑ΔHof(products)−∑ΔHof(Reactants)
ΔHoreaction = ΔHfo[C6H12O6(s)] - {ΔHfo[C(s, graphite) + ΔHfo[H2(g)] + ΔHfo[O2(g)]}
C(s), H2(g), and O2(g) each have a standard enthalpy of formation equal to 0 since they are in their most stable forms:
ΔHoreaction = [1*-1273.3] - [(6*0) + (6*0) + (3*0)]
= -1273.3 - (0 + 0 + 0)
= -1273.3
They depend on nitrogen-fixing bacteria, which convert atmospheric nitrogen into a usable form.
We can rearrange the ideal gas equation:
PV = nRT, where n is the number of moles equivalent to:
n = mass / Mr
PV = mRT/Mr
m/V = PMr/RT
density = PMr / RT; where Mr and R are constant.
Hello!
The molarity of the HBr solution is 0,172 M.
Why?
The neutralization reaction between LiOH and HBr is the following:
HBr(aq) + LiOH(aq) → LiBr(aq) + H₂O(l)
To solve this exercise, we are going to apply the common titration equation:


Have a nice day!