Without counting wind resistance, They will both reach the ground at the same time. If we apply the concept of kinematics, such as the equation vf^2=vi^2 + 2ad. This equation doesn't count how big or how heavy the mass is, it only focuses on how fast where they in the start and how far are both of them from the ground. So if they both have the same distance and same initial veloctity, then they will reach the ground at the same time.
For example, Try dropping a pen and a paper(Vertically) at the same height, you'll see they'll reach the ground at the same time.
If you count wind resistance, the heavier ball will hit the ground faster, because the air molecules will resist the lighter ball compared to the heavier ball.
5.4 x 1014Hz
wavelength x frequency = the speed of light
Answer:
The momentum of the photon is 1.707 x 10⁻²² kg.m/s
Explanation:
Given;
kinetic of electron, K.E = 100 keV = 100,000 eV = 100,000 x 1.6 x 10⁻¹⁹ J = 1.6 x 10⁻¹⁴ J
Kinetic energy is given as;
K.E = ¹/₂mv²
where;
v is speed of the electron

Therefore, the momentum of the photon is 1.707 x 10⁻²² kg.m/s
Answer:
Well the definition of an application is the act of putting to a special use or purpose so lam assuming that you want specific uses that scientists make of gravity in their work.
Well our first application has helped us to send satellites around the solar system with what Nasa calls gravity assist. Using a particular planets gravity to slingshot a satellite to another destination. Look it up.
The next application much simpler but here on Earth. There are many hydro-electric power stations in use all over the world. Water is stored at a high level and released falling 100s of metres to a turbine where it generates electricity.
Hope that helps.
Explanation:
Answer:
0.3956
Explanation:
Newton's 2nd law of motion says that Force = Mass*Acceleration (f=ma) so to find the force used on the football you multiply it's mass by its acceleration.
0.43*0.92 = 0.3956.
0.4 if you round