Three types of radioation - Alpha, Beta, Gamma. hope this helps
Water is usually used to cool down automobile engines when they get hot, yes. Therefore, that means water has a high heat capacity.
That makes the answer letter D you provided above.
D) Water has a high heat capacity.
Another example would be trying to put out a fire with a bucket of water. Usually, you can put out the fire debating on the size!
Answer:c-The gravitational effect when spacecraft flies close to the asteriod
Explanation:
Gravitational effect on the spacecraft gives an estimate that how big is the asteroid by experiencing its gravitational pull.
The amount of extra thrust required to maintain the trajectory of the spacecraft during its motion hints at the scientist about the size of the asteroid.
Gravitational pull is directly proportional to the mass of object so greater the mass, greater will be the pull.
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
Answer:
Part A: 16.1 V
Part B: 20.5 V
Part C: 21.5%
Explanation:
The voltmeter is in parallel with the 4.5-kΩ resistor and the combination is in series with the 6.5-kΩ resistor. The equivalent resistance of the parallel combination is given as


Part A
The voltmeter reading is the potential difference across the parallel combination. This is found by using the voltage-divider rule.

Part B
Without the voltmeter, the potential difference across the 4.5-kΩ resistor is found using the same rule as above:

Part C
The error in % is given by
