1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
2 years ago
10

Why earth's atmosphere so important? Why earth's atmosphere so important? Follow 6 answers 6 Report Abuse Are you sure you want

to delete this answer? Yes No
Physics
1 answer:
marshall27 [118]2 years ago
4 0
Earth's atmosphere is important because it contains oxygen without which we wouldn't be alive. It also prevents harmful rays from space or smaller meteors from entering and reaching Earth.
You might be interested in
Two point charges are separated by 10 cm, with an attractive force between them of 15 N. Find the force between them when they a
suter [353]

Answer:

(a) the force is 8.876 N

(b) the magnitude of each charge is 4.085 μC

Explanation:

Part (a)

Given;

coulomb's constant, K = 8.99 x 10⁹ N.m²/C²

distance between two charges, r = 10 cm = 0.1 m

force between the two charges, F = 15 N

when the distance between the charges changes to 13 cm (0.13 m)

force between the two charges, F = ?

Apply Coulomb's law;

F = \frac{Kq_1q_2}{r^2} \\\\let \ Kq_1q_2 = C\\\\F =\frac{C}{r^2} \\\\C = Fr^2\\\\F_1r_1^2 = F_2r_2^2\\\\F_2 =\frac{F_1r_1^2}{r_2^2} \\\\F_2 = \frac{15*0.1^2}{0.13^2} \\\\F_2 = 8.876 \ N

Part (b)

the magnitude of each charge, if they have equal magnitude

F = \frac{KQ^2}{r^2}

where;

F is the force between the charges

K is Coulomb's constant

Q is the charge

r is the distance between the charges

F = \frac{KQ^2}{r^2} \\\\Q = \sqrt{\frac{Fr^2}{K} } \\\\Q =  \sqrt{\frac{15*(0.1)^2}{8.99*10^9} } = 4.085 *10^{-6} \ C\\\\Q = 4.085 \ \mu C

4 0
3 years ago
What mass of ice (in g) can be melted if 27.2 kJ of thermal energy are added at the freezing point? Use molar mass = 18.02 g/mol
san4es73 [151]

Answer : The mass of ice melted can be, 3.98 grams.

Explanation :

First we have to calculate the moles of ice.

Q=\frac{\Delta H}{n}

where,

Q = energy absorbed = 27.2 kJ

\Delta H = enthalpy of fusion of ice = 6.01 kJ/mol

n = moles = ?

Now put all the given values in the above expression, we get:

27.2kJ=\frac{6.01kJ/mol}{n}

n=0.221mol

Now we have to calculate the mass of ice.

\text{Mass of ice}=\text{Moles of ice}\times \text{Molar mass of ice}

Molar mass of ice = 18.02 g/mol

\text{Mass of ice}=0.221mol\times 18.02g/mol=3.98g

Thus, the mass of ice melted can be, 3.98 grams.

3 0
3 years ago
Compare the maximum rate of heat transfer to the basal metabolic rate by converting a bmr of 88 kcal/hr into watts. what is the
elena-14-01-66 [18.8K]

Explanation :

It is given that,

BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :

We know that, 1 kilocalorie = 4184 joules

So, 1\ kcal/h=\dfrac{1\times 4184\ J}{3600\ sec}

1\ kcal/h=1.16\ J/sec

J/sec is nothing but watts.

So, 1\ kcal/h=1.16\ watts

and 88\ kcal/h=88\times 1.16\ watts = 102.08\ watts

So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.

8 0
3 years ago
Water is flowing in a pipe with a circular cross section but with varying cross-sectional area, and at all points the water comp
slamgirl [31]

(a) 5.66 m/s

The flow rate of the water in the pipe is given by

Q=Av

where

Q is the flow rate

A is the cross-sectional area of the pipe

v is the speed of the water

Here we have

Q=1.20 m^3/s

the radius of the pipe is

r = 0.260 m

So the cross-sectional area is

A=\pi r^2 = \pi (0.260 m)^2=0.212 m^2

So we can re-arrange the equation to find the speed of the water:

v=\frac{Q}{A}=\frac{1.20 m^3/s}{0.212 m^2}=5.66 m/s

(b) 0.326 m

The flow rate along the pipe is conserved, so we can write:

Q_1 = Q_2\\A_1 v_1 = A_2 v_2

where we have

A_1 = 0.212 m^2\\v_1 = 5.66 m/s\\v_2 = 3.60 m/s

and where A_2 is the cross-sectional area of the pipe at the second point.

Solving for A2,

A_2 = \frac{A_1 v_1}{v_2}=\frac{(0.212 m^2)(5.66 m/s)}{3.60 m/s}=0.333 m^2

And finally we can find the radius of the pipe at that point:

A_2 = \pi r_2^2\\r_2 = \sqrt{\frac{A_2}{\pi}}=\sqrt{\frac{0.333 m^2}{\pi}}=0.326 m

6 0
3 years ago
Mrs. Perez added a room temperature copper cube and an aluminum cube she just removed from the freezer to a beaker of boiling wa
faust18 [17]
I think the answer is A
5 0
3 years ago
Other questions:
  • CO2 , NaCl , HCl can be classified as ?
    8·1 answer
  • Why forces are balanced and unbalanced? need help with this the lesson is tommorow
    6·2 answers
  • Is it inhumane to keep a cat in one room?
    5·1 answer
  • A device that uses electricity and magnetism to create motion is called a (motor magnet generator) . In a reverse process, a dev
    7·2 answers
  • calculate the force between two objects that have masses of 20 kg and 100 kg separated by a distance of 2.6 m
    15·1 answer
  • A ball whose mass is 0.4 kg hits the floor with a speed of 4 m/s and rebounds upward with a speed of 2 m/s. If the ball was in c
    11·1 answer
  • Which layer of the sun do we normally see?
    10·1 answer
  • A ____ is one of the tiny dots of light that form a grid on your screen.
    9·2 answers
  • Please answer fast ————-
    15·1 answer
  • Select the correct answer. In a video game, a ball moving at 0.6 meter/second collides with a wall. After the collision, the vel
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!