The molar mass of CuCl2 is 134.45 g/mol; therefore, you divide 2.5 g of CuCl2 by 134.45 g of CuCl2 leaving you with 0.019 moles
Answer:
lol thanks for the point btws! i really needed them for my math test questions have a good day btw! good vibes!
Explanation:
Answer:
Dont use alot of points
Explanation:
people scam like me and ay the wrong answer and get the points :|
Answer:
70.77 g/mol is the molar mass of the unknown gas.
Explanation:
Effusion is defined as rate of change of volume with respect to time.
Rate of Effusion=
Effusion rate of oxygen gas after time t = 
Molar mass of oxygen gas = M = 32 g/mol
Effusion rate of unknown gas after time t = 
Molar mass of unknown gas = M'
The rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:



M' = 70.77 g/mol
70.77 g/mol is the molar mass of the unknown gas.
Answer:
0.9 mole of Fe(OH)3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Fe(NO3)3 + 3NaOH —> Fe(OH)3 + 3NaNO3
Now, we can determine the moles of iron (III) hydroxide formed from the reaction as follow:
From the balanced equation above,
3 moles of NaOH reacted to produce 1 mole of Fe(OH)3.
Therefore, 2.7 moles of NaOH will react to produce = 2.7/3 = 0.9 mole of Fe(OH)3.
Therefore, 0.9 mole of Fe(OH)3 is produced from the reaction.