moles Cu produced : 0.002
<h3>Further explanation</h3>
Concentration of copper sulfate (CuSO₄) : 0.319 g/dm³
MW CuSO₄ :

mol CuSO₄ /dm³ :

CuSO₄⇒Cu²⁺ + SO₄²⁻
mol Cu : mol CuSO₄ = 1 : 1 , so mol Cu²⁺=0.002
The sub-atomic particles of an atom are the proton, electron and the neutron. An electron has a charge of -1 and a smaller
mass than a proton. Proton has the same mass with the neutron. The ratio
between the mass of a proton and an electron is about 2000. An electron has an
equal value but negative charge with the proton.
Answer:
Molecular formula is C₂₆H₃₆O₄
Explanation:
The compound is 75.69 % C, 8.80 % H and 15.51 % O. This data means, that in 100 g of compound we have 75.69 g, 15.51 g and 8.80 g of, C, O and H, respectively. We know the molar mass of the compound, so we can work to solve the moles of each element.
In 100 g of compound we have 75.69 g C, 15.51 g O and 8.80 g H
In 412 g of compound we would have:
(412 . 75.69) / 100 = 311.8 of C
(412 . 15.51) / 100 = 63.9 g of O
(412 . 8.80) / 100 = 36.2 g of H
Now, we can determine the moles of each, that are contained in 1 mol of compound.
312 g / 12 g/mol 26 C
64 g / 16 g/mol = 4 O
36 g / 1 g/mol = 36 H
Molecular formula is C₂₆H₃₆O₄
Please link those observations so we can answer your question. have a good day <3
Organic compounds that contain only hydrogens and carbons are known as hydrocarbons. Hydrocarbons can be saturated or unsaturated in nature. Saturated hydrocarbons are those which contain only carbon-carbon single bonds whereas unsaturated hydrocarbons contain carbon-carbon double or triple bonds. Hydrocarbons can undergo several reactions like substitution, elimination etc.
When one or more hydrogen atoms in hydrocarbon are substituted with halogen it results in the formation of haloalkane. Due to which the molecular weight increases as the halogen atoms are large compared to the carbon and hydrogen atoms. The bond becomes polar due to the presence of electronegative halogen atom and thus results in the increase in boiling point of the haloalkane.
Thus, the boiling point of the new compound increases on substituting a hydrogen atom with a halogen in a hydrocarbon.