Answer:
Br
|
Br-P-Br
|
Br
Explanation:
To calculate the valance electrons, look at the periodic table to find the valance electrons for each atom and add them together. P is in column 5A, so it has 5, Br is in column 7A, so it has 7 (multiply by 4 since there are 4 Br atoms to give 28) and there is a 1- charge, so add one more electron. 5+28+1=34, so there are 34 electrons to place. P would be the central atom, so place it in the middle. Place each Br around the P (as shown above) with a a single line connecting it. Each line represents 2 electrons, so 8 total have been place, leaving 26 remaining. Place 6 electrons around each Br (2 on each of the unbonded sides), which leaves 2 electrons remaining. The remaining pair of unbound electrons will be attached to the P between any two Br atoms. Phosphorus doesn't have to follow the octet rule, so it actually ends up with 10 valance electrons.
Answer:
396 g OF CO2 WILL BE PRODUCED BY 270 g OF GLUCOSE IN A RESPIRATION PROCESS.
Explanation:
To calculate the gram of CO2 produced by burning 270 g of gucose, we first write out the equation for the reaction and equate the two variables involved in the question;
C6H12O6 + 6O2 -------> 6CO2 + 6H2O
1 mole of C6H12O6 reacts to form 6 moles of CO2
Then, calculate the molar mass of the two variables;
Molar mass of glucose = ( 12 *6 + 1* 12 + 16* 6) g/mol = 180 g/mol
Molar mass of CO2 = (12 + 16 *2) g/mol = 44 g/mol
Next is to calculate the mass of glucose and CO2 involved in the reaction by multiplying the molar mass by the number of moles
1* 180 g of glucose yields 6 * 44 g of CO2
180 g of glucose = 264 g of CO2
If 270 g of glucose were to be used, how many grams of CO2 will be produced;
so therefore,
180 g of glucose = 264 g of CO2
270 g of glucose = x grams of CO2
x = 264 * 270 / 180
x = 71 280 / 180
x = 396 g of CO2.
In other words, 396 g of CO2 will be produced by respiration from 270 g of glucose.
I'm pretty sure it becomes an ion! If an atom gains a negative electron, it becomes an ion.
Answer:
Most viscous to least viscous: 
Explanation:
For hydrocarbons, viscosity increases with increasing molar mass. Because increasing molar mass signifies increase in number of electrons in molecules.
We know that in non-polar hydrocarbons, only van der waal intermolecular force exists. Van der waal force is proportional to number of electrons in a molecule.
Therefore with increasing molar mass, van der waal force increases. hence molecules gets more tightly bind with each other resulting increase in viscosity.
Here molar mass order : 
Therefore viscosity order : 