1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
11

PLS HELP ASAP I NEED THIS BY TONIGHT

Physics
1 answer:
Arturiano [62]3 years ago
8 0

Answer:

done

Explanation:

You might be interested in
Assume a change at the source of sound reduces the wavelength of a sound wave in air by a factor of 3.
noname [10]

Explanation:

The speed of a wave is given by :

v=f\lambda ......(1)

(i) Here, the wavelength of a sound wave in air reduces by a factor of 3. Equation (1) becomes :

\lambda=\dfrac{v}{f}

Wavelength and frequency are inversely proportional to each other. So, if wavelength of a sound wave in air reduces by a factor of 3, then the frequency will increases by a factor of 3.

(ii) It remains the same.

8 0
3 years ago
A bicycle wheel with radius 0.3 m rotates from rest to 3 rev/s in 5 s. What is the magnitude and direction of the total accelera
AlekseyPX

Answer:

Explanation:

Given

Radius of bicycle wheel r=0.3\ m

Initial angular velocity \omega _0=0

It rotates 3 revolution in 5 s therefore

\omega =2\pi 3=\6\pi =18.85\ rad/s

using \omega =\omega _0+\alpha t

where \alpha =angular\ acceleration

\omega =Final\ angular\ velocity

t=time

\alpha =\frac{18.85}{5}=3.77 rad/s^2

Total acceleration of any point will be a vector sum of tangential acceleration and centripetal acceleration

\omega at t=1

\omega =0+3.77\times 1=3.77 rad/s

a_c=\omega ^2\cdot r

a_c=(3.77)^2\cdot 0.3=4.26 m/s^2

Tangential acceleration a_t=\alpha \times r

a_t=3.77\times 0.3=1.13 m/s^2

a_{net}=\sqrt{a_t^2+a_c^2}

a_{net}=\sqrt{(1.13)^2+(4.26)^2}

a_{net}=4.41 m/s^2

                       

7 0
3 years ago
A 3.91 kg cart is moving at 5.7 m/s when it collides with a 4 kg cart which was at rest. They collide and stick together.
Nesterboy [21]

Answer:

<em>The velocity after the collision is 2.82 m/s</em>

Explanation:

<u>Law Of Conservation Of Linear Momentum </u>

It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is  

P=mv.  

If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

P=m_1v_1+m_2v_2

If a collision occurs and the velocities change to v', the final momentum is:

P'=m_1v'_1+m_2v'_2

Since the total momentum is conserved, then:

P = P'

Or, equivalently:

m_1v_1+m_2v_2=m_1v'_1+m_2v'_2

If both masses stick together after the collision at a common speed v', then:

m_1v_1+m_2v_2=(m_1+m_2)v'

The common velocity after this situation is:

\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.

After the collision, both cars stick together. Let's compute the common speed after that:

\displaystyle v'=\frac{3.91*5.7+4*0}{3.91+4}

\displaystyle v'=\frac{22.287}{7.91}

\boxed{v' = 2.82\ m/s}

The velocity after the collision is 2.82 m/s

6 0
3 years ago
Pls answer asap!! I need help on this question!
evablogger [386]

Hubble space telescope, Hubble deep field guide, moon, mercury, Saturn, sun, galaxy messier 101

8 0
2 years ago
Read 2 more answers
What is the de Broglie wavelength of an object with a mass of 2.50 kg moving at a speed of 2.70 m/s? (Useful constant: h = 6.63×
xxMikexx [17]

Answer:

9.82 × 10^{-35} Hz

Explanation:

De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:

λ = \frac{h}{mv}

where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.

Given that: h = 6.63 ×10^{-34} Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;

λ = \frac{h}{mv}

  = \frac{6.63*10^{-34} }{2.5*2.7}

 = \frac{6.63 * 10^{-34} }{6.75}

 = 9.8222 × 10^{-35}

The wavelength of the object is 9.82 × 10^{-35} Hz.

4 0
3 years ago
Other questions:
  • A rocket rises vertically, from rest, with an acceleration of 3.2 m/s^2 until it runs out of fuel at an altitude of 725 m . Afte
    14·1 answer
  • After a flood, people should guard against
    10·2 answers
  • A trumpet player is tuning his instrument by playing an A note simultaneously with the first-chair trumpeter, who has perfect pi
    6·1 answer
  • How are frequency and period related to each other? A. They are the same for any given wave B. They have the same magnitude but
    8·1 answer
  • How much work (in J) is required to expand the volume of a pump from 0.0 L to 2.7 L against an external pressure of 1.0 atm?
    7·1 answer
  • What’s the answer to this one?
    11·1 answer
  • On a standing wave on a string, the minimum number of nodes is 1 and antinodes is 2. True or false?
    12·1 answer
  • the majority of the alpha particles passed through with no deflection. what does this suggest about the structure of the atom?
    14·2 answers
  • Water is considered to be
    5·1 answer
  • An echo is a reflection of sound against another surface. Suppose you are standing on one side of a canyon and you
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!